Momentum balances on the North Carolina Inner Shelf

Steve Lentz\(^1\), R. T. Guza\(^2\), S. Elgar\(^1\), F. Feddersen\(^2\), T. H. C. Herbers\(^3\)

Abstract. Four months of moored current, pressure, temperature, conductivity, wave, and wind observations on the North Carolina shelf indicate three dynamically distinct regions: the surf zone, the inner shelf between the surf zone and the 13-m isobath, and the mid shelf. In the surf zone the along-shelf momentum balance is between the cross-shelf gradient of the wave-radiation stress and the bottom stress. The linear drag coefficient in the surf zone is about 10 times larger than seawards of the surf zone. On the inner shelf the along-shelf momentum balance is also frictional; the along-shelf wind stress and pressure gradient are balanced by bottom stress. In the cross-shelf momentum balance, the pressure gradient is the superposition of roughly equal contributions from the Coriolis force (geostrophy) and wave setdown from shoaling, unbroken surface gravity waves. At mid shelf the along-shelf momentum balance is less frictional and hence flow accelerations are important. The cross-shelf momentum balance is predominantly geostrophic because the greater depth and smaller bottom slope at mid shelf reduces the importance of wave setdown. The cross-shelf density gradient is in thermal wind balance with the vertical shear in the along-shelf flow in depths as shallow as 10 m. The dominant along-shelf momentum balances provide a simple estimate of the depth-averaged along-shelf current in terms of the measured forcing (i.e. wind stress, wave radiation stress divergence, and along-shelf pressure gradient) that reproduces accurately the observed cross-shelf variation of the depth-averaged along-shelf current between the surf zone and midshelf.

1. Introduction

The relative importance of surface gravity wave and wind forcing varies by an order of magnitude between the surf zone (water depths of order 1 m) and the mid shelf (water depths of order 100 m). Many observational programs have focused on flows in the surf zone or on the mid shelf. However, there are few detailed observational studies of the inner shelf region, between the surf zone and the mid shelf, and momentum balances there are understood poorly.

The depth-averaged along-shelf momentum balance within the surf zone (assuming along-shelf homogeneous bathymetry) is between forcing by obliquely incident breaking surface waves (e.g. gradients in the along-shelf component of the wave radiation stress \(\partial S_{xy}/\partial x\)), bottom stress, and possibly cross-shelf mixing processes [Thornton and Guza, 1986; Svendsen and Putrevu, 1994; Feddersen et al., 1998]. (Wave radiation stresses, e.g. \(S_{xy}\) and \(S_{xx}\), represent the momentum flux due to surface gravity waves and are analogous to Reynolds’s stresses [Longuet-Higgins and Stewart, 1964]. Unless noted otherwise, the time scales of interest are a few days, long compared with surface wave periods and variables are averages over many wave periods). Recent studies [Whitford and Thornton, 1993; Feddersen et al., 1998] suggest the along-shelf wind stress is sometimes significant in the surf zone, but is usually much smaller than \(\partial S_{xy}/\partial x\). The along-shelf momentum balance at mid shelf is complex. Acceleration, Coriolis force, pressure gradients, wind stress, and bottom stress are each important on various shelves [Allen and Smith, 1981; Lentz and Winant, 1986; Lee et al., 1984, 1989]. Previous studies indicate the inner shelf is dynamically different with along-shelf flows driven by both along-shelf wind stress and along-shelf pressure gradients, and these forcing terms are balanced primarily by bottom
friction [Scott and Csanady, 1976; Pettigrew, 1981; Lentz and Winant, 1986; Masse, 1988; Lee et al., 1989; Lentz, 1994].

The depth-averaged cross-shelf momentum balance within the surf zone is between gradients of the cross-shelf radiation stress ($\partial S_{xx}/\partial z$) associated with wave breaking and the cross-shelf pressure gradient $\partial P/\partial z$ (i.e., wave set-up) [Longuet-Higgins and Stewart, 1964; Bowen et al., 1968; Lentz and Raubenheimer, 1999]. The cross-shelf momentum balance over the mid shelf is between $\partial P/\partial z$ and the Coriolis force associated with the along-shelf flow (i.e., geostrophic) [Brown et al., 1985, 1987; Lee et al., 1989]. As the depth decreases setup (or setdown) forced by the cross-shelf wind stress will become increasingly important. On the South Carolina shelf in 10 m of water $\partial P/\partial z$, the Coriolis force, and the cross-shelf wind stress were estimated to be approximately equal in magnitude [Lee et al., 1989]. However, $\partial P/\partial z$ was estimated as the difference between two pressure sensors spanning the entire 75 km-wide shelf. Furthermore, surface waves were not measured and thus the wave setdown associated with $\partial S_{xx}/\partial z$ in unbroken shoaling waves [Bowen et al., 1968] could not be estimated. The relative importance of surface wave forcing, Coriolis force, and cross-shelf wind stress in the cross-shelf momentum balance over the inner shelf is unknown.

Previous studies have generally included at most one mooring site between the 5-m and 30-m isobaths so that little is known about the momentum balances across the inner shelf. More detailed observations across the inner 16 km of the North Carolina shelf are used here to determine the cross-shelf variation of the dominant terms in the depth-averaged cross- and along-shelf momentum balances. The observations, in water depths ranging from 4 to 26 m, span the region from the surf zone to mid shelf and include simultaneous measurements of currents, winds, waves, and pressures. An overview of the observations is given in Section 2. Momentum balances are described in Section 3. Simplified scalings of the observed dominant balances are considered in Section 4, followed by a summary in Section 5.

2. Background

2.1. Field Program and Data Processing

Observations were obtained offshore of the Army Corps of Engineers’ Field Research Facility (FRF) on the Outer Banks near Duck, North Carolina, from August through early December 1994 as part of the interdisciplinary Coastal Ocean Processes Inner Shelf Study [Butman, 1994]. The site is about midway between Cape Henry, at the mouth of Chesapeake Bay (100 km to the north) and Cape Hatteras. The coastline is relatively straight between Cape Henry and Oregon Inlet (50 km to the south), with an orientation of about 340°T at the array center (Figure 1). The bathymetry inshore of the 20-m isobath is approximately homogeneous along-shelf on scales of many km. Offshore of the 20-m isobath the complex ridge and swale bathymetry varies several meters vertically over horizontal scales of a few km (Figure 2). The sea floor slopes relatively steeply (0.01) from the 4-m to the 13-m isobath and more gently (0.002) from the 13-m to the 20-m isobath. Offshore of the 20-m isobath the sea floor slope is small (0.0002) over cross-shelf scales large compared with the ridge and swale features.

Two rigid towers (in 4 and 8 m water depth) and three surface/subsurface mooring pairs (in 13, 21, and 26 m water depth) were deployed along a 16-km cross-shelf transect (Figure 2). The towers supported Marsh-McBirney electromagnetic current meters and fast-response thermistors sampled at 2 Hz, with vertical spacings of about 1 m or less. The moorings supported Vector-Measuring Current Meters that measure horizontal currents and temperature, and SeaBird SeaCATs that measure temperature and conductivity, all with sample rates of 4 min. Vertical separations for these instruments were 1 to 5 m (Figure 2). Two SeaCATs were also deployed 1 and 4 m above the bottom on a piling of the FRF pier in about 8-m depth. Setra pressure sensors, sampled at 1 or 2 Hz to measure surface gravity waves, were deployed...
The instrumentation was deployed during late July and early August and recovered either at the end of October or in early December, 1994. The 8-m tower and the 13-m surface mooring both failed about October 10, during a strong Nor’easter. The 21-m surface mooring failed during a Nor’easter on September 4, came ashore, was refurbished, and redeployed on October 4. Both the 21-m and 26-m surface moorings failed during Hurricane Gordon (November 16) and came ashore. The instrumentation and data were recovered after these failures. Time series from the 4-m and 8-m sites have gaps owing to maintenance, intermittent problems with individual instruments, and a severe lightning strike in early August.

All time series (with the exception of surface wave data) were block-averaged to hourly values centered on the hour. The focus is on subtidal dynamics so time series were low-pass filtered (half-power point 38 hours) unless noted otherwise. All vector time series were rotated to a coordinate system based on the coastline orientation (Figure 1), with the along-shelf coordinate y positive toward 340°T, and the cross-shelf coordinate x positive offshore. Obvious biases and drifts in some conductivity time series were identified and corrected by comparisons with adjacent moored conductivity cells and shipboard CTD data obtained near the moorings [Alessi et al., 1996; Waldorf et al., 1995, 1996]. Data were discarded from near-bottom conductivity cells that drifted substantially in late October, presumably because of fouling by suspended sediment. Salinity and density were estimated using the temperature and corrected conductivity [Fofonoff and Millard, 1983]. Pressure time series from sensors mounted on anchors (water depths greater than 8 m) sometimes show positive shifts of 1 - 30 mb during storms, presumably owing to scouring and settling of the anchors. Anchor shifts greater than 1 mb were identified and removed by comparison with time series from other near-bottom pressure sensors (rigidly mounted on jetted pipes in shallower water) that did not shift. A more detailed description of data return and initial processing, including correction of conductivity time series and removal of anchor shifts from pressure time series, is given in Alessi et al. [1996].

2.2. Overview of Observations

The dominant time scale of wind variability is a few days, associated primarily with the passage of cold fronts [Austin, 1998]. Comparison of winds from the FRF pier (8-m depth), the 21-m site, and several NDBC buoys in the region indicate that subtidal winds did not vary substantially across the 16 km cross-shelf extent of the study region during the field program (Appendix A.2). Wind directions are typically 45° to the coast, either poleward (upwelling favorable) and offshore, or equatorward (downwelling favorable) and onshore. The strongest wind stresses (Appendix A.1) were associated with Nor’easters (downwelling favorable) (Figure 3). Significant wave heights H_{sig} at the 8-m wave array ranged from 0.2 to 4 m (Figure 3) and are correlated with the wind stress magnitude. Hourly averaged wave directions at the ar-
ray ranged between +50° and −50° from normally incident, i.e. wave crests parallel to the coast.

Along-shelf current variance over time scales from hours to weeks is dominated by subtidal variability. At all five sites, the correlation between subtidal along-shelf currents at different levels in the water column is greater than 0.75 (the 95% confidence level for a correlation significantly different from zero is 0.45 assuming a decorrelation time scale of 3 days and 60-day long time series). Subtidal along-shelf currents tend to decrease by roughly a factor of two from near the surface to near the bottom. The much weaker subtidal cross-shelf currents are not well correlated over the water column at any site, and are often in opposite directions near the surface and bottom. Depth-averaged and subtidal (e.g. low-pass filtered, Appendix A.1) currents are considered here unless otherwise noted.

The mean, depth-averaged, along-shelf flow \(\vec{u} \) is equatorward at all five sites; 9 cm/s at the 13-m site and 4-5 cm/s at the 4-m and 26-m sites (Table 1). Although the data do not span the same time period (Figure 3), the cross-shelf structure for a shorter common time period is similar.

The principal axes of the depth-averaged currents are along-shelf to the accuracy of the measurements (≈ 5°) with standard deviations of 13-20 cm/s (Table 1). Correlations between depth-averaged along-shelf currents measured at the five cross-shelf sites range from 0.64 to 0.94. In contrast to the depth-averaged along-shelf flow, both the means and standard deviations of the depth-averaged cross-shelf flow \(\vec{v} \) are small relative to the accuracy of the current measurements (2-3 cm/s) [Beardsley, 1987; Guza et al., 1988]. Depth-averaged cross-shelf currents at different moorings are generally not correlated, consistent with error-dominated measurements and/or unresolved spatial variation of the current. In either case, estimates of terms in the momentum balances associated with \(\vec{u} \) must be interpreted cautiously. Though a few cm/s or less, \(\vec{u} \) may still be important for cross-shelf exchange because the inner shelf region is so narrow.

The vertical structure of temperature evolved dramatically during the study (Figure 4a). In August, 23°C near-surface water and deeper 17°C water were separated by a strong thermocline centered about 10 m below the surface. Wind-driven upwelling (downwelling) of the thermocline in August resulted in large cross-shelf temperature gradients onshore of the 26-m site as the thermocline shoaled (deepened) and formed a surface (bottom) front. The water column was vertically mixed at least as far offshore as the 26-m site in response to strong winds from the northeast in early September. A strong thermocline did not redevelop and temperature differences across the water column often were much less than 2°C from September through November.

Despite the strong thermocline in August, both vertical (Figure 4) and cross-shelf density gradients were dominated by salinity variations. The primary source of salinity variability was narrow, shallow plumes of relatively fresh water, presumably from Chesapeake Bay [Rennie et al., 1999]. The Chesapeake Bay plume flowed into the study region generally during downwelling favorable winds and was typically confined inshore of the 21-m isobath until it was swept offshore by upwelling favorable winds. When the Chesapeake Bay plume was not present, salinities generally increase with depth and distance offshore, consistent with historical data [Boicourt, 1973]. Vertical salinity (and hence density) gradients tended to be large during August and small during October when there was strong wind and wave forcing (Figure 3).

3. Momentum Balances

The depth-averaged momentum equations, assuming hydrostatic flow and small sea level variations compared with the water depth, are

\[
\frac{\partial u}{\partial t} + \frac{1}{h} \frac{\partial}{\partial z} \int_{-h}^{0} u^2 dz + \frac{1}{h} \frac{\partial}{\partial y} \int_{-h}^{0} u dv - f \vec{v} = - \frac{1}{\rho_o} \frac{\partial P}{\partial x} + \frac{\tau_{ux}}{\rho_o h} - \frac{1}{\rho_o h} \frac{\partial S_{xx}}{\partial x} \tag{1}
\]

\[
\frac{\partial v}{\partial t} + \frac{1}{h} \frac{\partial}{\partial x} \int_{-h}^{0} u dv + \frac{1}{h} \frac{\partial}{\partial y} \int_{-h}^{0} v^2 dz + f \vec{u} = - \frac{1}{\rho_o} \frac{\partial P}{\partial y} + \frac{\tau_{vy}}{\rho_o h} - \frac{1}{\rho_o h} \frac{\partial S_{xy}}{\partial x} \tag{2}
\]

where \((u, v)\) are the cross-shelf (x) and along-shelf (y) subtidal components of velocity, \((\vec{u}, \vec{v})\) are the corresponding depth-averaged velocities, \(z\) is height above mean sea level, \(h\) is the water depth, \(f = 8.59 \times 10^{-5} \text{s}^{-1}\) is the Coriolis parameter, \(\rho_o = 1023 \text{ kg/m}^3\) is a reference density, \((\partial P/\partial x, \partial P/\partial y)\) is the depth-averaged horizontal pressure gradient, \(g = 9.81 \text{ m/s}^2\) is gravitational acceleration, \((\tau_{ux}, \tau_{vy})\) is the wind stress, \((\tau_{bx}, \tau_{by})\) is the bottom stress, and \(S_{xx} \text{ and } S_{xy}\) are wave radiation stresses. Lateral mixing processes on time scales shorter than subtidal may be significant, especially in the surf zone, but are not included because they could not be estimated accurately from the observations. Along-shelf gradients in the surf zone radiation stress and pressure fields at relatively short spatial scales (e.g. associated with local along-shelf bathymetric variations) could not be estimated. Support for neglecting along-shelf variations in the along-shelf momentum balance (2) inshore of the 8-m isobath is provided by Feddersen et al. [1998].
Figure 3. Time series of the along-shelf wind stress (negative is equatorward), significant wave height in 8 m water depth, and the subtidal depth-averaged along-shelf current at the five mooring sites. Offshore distances of mooring sites are in parentheses.
Table 1. Statistics of depth-averaged currents (cm/s). Orientations are relative to the along-shelf direction 340°T. Time series span different time periods (see Figure 3).

<table>
<thead>
<tr>
<th>Site</th>
<th>Mean</th>
<th>Principal Axes</th>
<th>Major</th>
<th>Minor</th>
<th>Orientation, deg</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 m</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>4°</td>
<td>79</td>
</tr>
<tr>
<td>8 m</td>
<td>1</td>
<td>7</td>
<td>20</td>
<td>2</td>
<td>-1°</td>
<td>61</td>
</tr>
<tr>
<td>13 m</td>
<td>-1</td>
<td>-9</td>
<td>19</td>
<td>2</td>
<td>-4°</td>
<td>66</td>
</tr>
<tr>
<td>21 m</td>
<td>-1</td>
<td>-8</td>
<td>18</td>
<td>2</td>
<td>-3°</td>
<td>69</td>
</tr>
<tr>
<td>26 m</td>
<td>-2</td>
<td>-5</td>
<td>13</td>
<td>2</td>
<td>2°</td>
<td>93</td>
</tr>
</tbody>
</table>

The depth-averaged pressure gradient (obtained by vertically integrating the hydrostatic equation) includes surface pressure P^s and density ρ contributions

$$\frac{\partial P}{\partial x} = \frac{\partial P^s}{\partial x} + \int_{-h}^{0} g \frac{\partial \rho}{\partial x} (1 + \frac{z}{h}) dz$$ \hspace{1cm} (3)$$

with a corresponding equation for $\frac{\partial P}{\partial y}$. $\frac{\partial P^s}{\partial x}$ includes contributions from the sea surface slope and the atmospheric pressure gradient and will be referred to as the barotropic pressure gradient. The second term on the right-hand side of (3), the density contribution to the depth-averaged pressure gradient, will be referred to as the baroclinic pressure gradient. Assuming hydrostatic flow, the near-surface pressure in (3) may be expressed in terms of near-bottom pressure P^b and density

$$P^s = P^b - \int_{-h}^{0} \rho g dz.$$ \hspace{1cm} (4)$$

The terms in (1–3) are estimated at some or all of the five mooring sites. Cross-shelf gradients are estimated as finite differences centered on the mooring sites. An alternate approach, estimating terms in control volumes bounded by adjacent moorings, yields similar results. The nonlinear terms on the left-hand side of (1) and (2) could not be estimated accurately at the 4-m and 8-m sites because the wave height can be a significant fraction of the water depth and the water column above the wave trough level (where u is onshore) was not sampled. Crude estimates suggest the nonlinear terms at the deeper sites were small. The nonlinear terms are not considered further. Estimation of the other terms is described in Appendix A.1 and uncertainties in some estimates are discussed in Appendix A.2. Bottom stress is estimated using a linear drag law

$$(\tau_x, \tau_y) = \rho \cdot r(u_b, v_b)$$ \hspace{1cm} (5)$$

where $r = 5 \times 10^{-4}$ m/s based on previous mid-shelf observations [e.g. Lentz and Winant, 1986] and (u_b, v_b) is the velocity 0.5 to 1.5 m above the bottom. Bottom stress estimates from (5) are similar to log-profile estimates using bottom tripod measurements at the 21-m site (Appendix A.3), suggesting a constant r provides reasonable bottom stress estimates at this site. However, the along-shelf momentum balance discussed in Section 3.1 implies r is substantially larger in the surf zone.
The time-average over the deployment period of terms in the cross- and along-shelf momentum balances either could not be estimated (e.g. mean pressure gradients) or are small compared with the fluctuations in those terms and are not considered further.

3.1. Along-shelf Momentum Balance

At the 4-m site, time series of the along-shelf wind (τ_{xy}) and bottom stresses (τ_{by} from (5)) are similar (Figure 5a). Exceptions occur during portions of October 14-15 and September 22 when the along-shelf wind and along-shelf current are opposed (e.g. τ_{xy} and τ_{by} have opposite signs in Figure 5a, and in Figure 5a discussed below). At these times, the wave radiation stress gradient opposed the wind stress, the 4-m site was in the surf zone, and the 4-m along-shelf current was in the direction of the wave radiation stress gradient indicating the dominant driving force was the radiation stress gradient $\partial S_{xy}/\partial x$ resulting from obliquely incident breaking waves (Figure 5b). To examine where wind or waves dominate the along-shelf forcing it is convenient to categorize each site (for each hourly time period) as either seawards of, or in, the surf zone even though the demarcation between the surf zone and the inner shelf is not sharp. For simplicity, a site is considered seawards of the surf zone if $H_{sg}/h < 0.33$, corresponding to breaking of less than about 10% of the waves [Thornton and Guza, 1984]. Surface wave heights at each site were estimated using a nearby bottom pressure gauge and linear theory. Using this criterion, the 4-m site was in the surf zone on August 23, September 3-6, 19, 22, October 3-4, and 10-20. The 4-m site is within the surf zone when $\partial S_{xy}/\partial x$ is large (Figure 5b) and also when H_{sg} is large, but the wave direction is close to normally incident so $\partial S_{xy}/\partial x$ (A3) is small. The 8-m tower was in the surf zone for a few hours on September 4 and 22. The 21-m and 26-m sites were never in the surf zone, and the 8-m tower and 13-m surface mooring failed during the large waves in mid October. More complicated expressions for defining the offshore extent of the surf zone [e.g. Battjes and Stive, 1985] yield similar estimates, and the results below do not depend critically on this definition.

When the 4-m site is in the surf zone the standard deviation of $(\rho_u h)^{-1} \partial S_{xy}/\partial x$ is 1-2 orders of magnitude larger than the standard deviations of other terms in the along-shelf momentum balance (Table 2, Figure 5). To balance $\partial S_{xy}/\partial x$ with the bottom stress, the linear drag coefficient r for the subtidal flow in the surf zone must be $r = 5 \times 10^{-8} \text{m/s}$, 10 times larger than the nominal value of r (Figure 6). The linear drag coefficient could increase because breaking waves transfer momentum effectively to the bottom, or because bottom roughness increases inside the surf zone [Garcez-Faria et al., 1998]. The increase in the drag coefficient in the surf zone is qualitatively consistent with results of a more detailed examination of the along-shelf momentum balance onshore of the 8-m site using additional observations, a cross-shelf integration that reduces the effects of lateral mixing on the estimated drag coefficients, and a quadratic drag formulation that includes the effect of surface waves on the mean bottom stress [Feddersen et al., 1998]. Seaward of the surf zone the estimated $\partial S_{xy}/\partial x$ term is small (Table 2).

The estimated Coriolis force $f \bar{u}$ is relatively small at the 4-m and 8-m sites, but similar to the other terms at the 21-m and 26-m sites (Table 2). However, $f \bar{u}$ will be neglected in subsequent analysis because estimates of $f \bar{u}$ are smaller than the estimated uncertainties (Appendix A.2), and uncorrelated between sites. Furthermore, $f \bar{u}$ is not correlated (range 0.09 to 0.37) with the the sum of the acceleration, pressure gradient, and surface and bottom stresses. In contrast, the acceleration term, which has similar magnitudes, is correlated (range 0.55 to 0.80) with the sum of the Coriolis and surface and bottom stress terms at all but the 4-m site (correlation 0.36). These results are consistent with previous studies [Allen and Smith, 1981; Lentz and Winant, 1986; Pettigrew, 1981; Lentz, 1994] and suggest $f \bar{u}$ is not estimated accurately from the observations.

When the 4-m site is offshore of the surf zone the standard deviations of the surface wind and bottom stresses are at least three times as large as the other terms (Table 2) and correlated with a regression coefficient near 1.0 (Table 3). Time series of surface and bottom stress are correlated at all sites (Table 3). However, standard deviations of $\partial S/\partial t$ and $\partial P/\partial y$ become increasingly significant as the depth increases and $\tau_{xy}/(\rho_u h)$ and $\tau_{by}/(\rho_u h)$ decrease (Table 2). At the 8-m site the standard deviation of the along-shelf flow acceleration and pressure gradient (measured along the 5-m isobath) are similar in magnitude, but are only about half the magnitude of the surface and bottom stress terms (Ta-

<table>
<thead>
<tr>
<th>Site</th>
<th>$\partial S/\partial x$</th>
<th>$f \bar{u}$</th>
<th>$1/\rho_u \partial P/\partial y$</th>
<th>τ_{xy}</th>
<th>τ_{by}</th>
<th>$1/\rho_u \partial S_{xy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-m</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.9</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>8-m</td>
<td>0.3</td>
<td>0.1</td>
<td>–</td>
<td>0.8</td>
<td>0.7</td>
<td>0.1 (0.1)</td>
</tr>
<tr>
<td>13-m</td>
<td>0.3</td>
<td>0.2</td>
<td>–</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>21-m</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>26-m</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Figure 5. Time series (unfiltered hourly values) of largest terms in the along-shelf momentum balance at the 4-m site, (a) wind $\tau_{xy}/\rho \delta h$ and bottom $\tau_{by}/\rho \delta h$ stresses, and (b) radiation stress gradient $-(\rho \delta h)^{-1} \partial S_{xy}/\partial x$. When $|\partial S_{xy}/\partial x|$ is relatively large the site is within the surf zone. Note the vertical scales in (a) and (b) differ.

Along the 5-m isobath the standard deviation of the barotropic pressure gradient is about five times larger than the standard deviation of the baroclinic component. In contrast, along the 21-m isobath the standard deviation of the barotropic pressure gradient is about twice the baroclinic component and the baroclinic component tends to oppose the barotropic component. The baroclinic pressure gradient results primarily from salinity variations and is substantial even when the water column is not stratified (e.g. early October). These estimates indicate that, at least along the 21-m isobath at this site, density estimates are critical for accurate estimation of along-shelf pressure gradients.
3.2. Cross-shelf Momentum Balance

In the surf zone the standard deviation of \((\rho_o h)^{-1} \partial S_{xx}/\partial x\) is several orders of magnitude larger than standard deviations of the other terms in the cross-shelf momentum balance (Table 4). Presumably \(\partial S_{xx}/\partial x\) is balanced by a cross-shelf pressure gradient \(\partial P/\partial x\), consistent with wave-driven setup. This balance cannot be confirmed because pressure gradients were not measured accurately in this region (Appendix A.2). However, analysis of a 3.5 year long time series (including the period of this study) of pressure in 2 m and 8 m depth at the Duck site indicates that large negative \(\partial S_{xx}/\partial x\) across the surf zone are balanced by \(\partial P/\partial x\), consistent with wave setup [Lentz and Raubenheimer, 1999].

When the 4-m site is offshore of the surf zone, the standard deviation of \((\rho_o h)^{-1} \partial S_{xx}/\partial x\) is an order of magnitude smaller than when the site is within the surf zone, but still an order of magnitude larger than the standard deviations of the other estimated terms, suggesting that \(\partial P/\partial x\) is dominated by (unmeasured) wave setup. At the 8-m site the magnitude of \((\rho_o h)^{-1} \partial S_{xx}/\partial x\) is a factor of three larger than \(f\bar{v}\) and the cross-shelf wind stress term \((\rho_o h)^{-1} \tau_{se}\) (Table 4 and Figure 9). The Coriolis force \(f\bar{v}\) and the cross-shelf wind stress \(\tau_{se}\) are positively correlated (Figure 9a). The strongest winds are from the northeast and drive an equatorward along-shelf current with an onshore directed Coriolis force that reinforces the onshore component of the wind stress so that the largest magnitudes of \(f\bar{v}\) and \((\rho_o h)^{-1} \tau_{se}\) are negative and occur concurrently (Figure 9a). However, the 8-m site is usually seaward of the surf zone and the wave-driven setup (\(\partial S_{xx}/\partial x\) is negative) opposes and is partially balanced by the wind and Coriolis forced setup during Nor’easters (Figure 9b). Pressure gradients \(- \rho_o^{-1} \partial P/\partial x = -(\rho_o h)^{-1} \partial S_{xx}/\partial x + f\bar{v} + (\rho_o h)^{-1} \tau_{se}\) during these events should be smaller than those from wave setup alone, and should have sign opposite to those from \(f\bar{v} + (\rho_o h)^{-1} \tau_{se}\) alone. Again, accurate estimates of the cross-shelf pressure gradient are needed to confirm this balance. Inside the surf zone \(\partial S_{xx}/\partial x\) is positive, and during a Nor’easter wave setup is reinforced by the cross-shelf wind stress and Coriolis force. However, the \(\partial S_{xx}/\partial x\) term is so much larger than the other terms that they are likely negligible for most surf zone conditions (see Section 4.2).

The cross-shelf pressure gradient \(\partial P/\partial x\) was measured at the 13-m site, and is balanced by \((\rho_o h)^{-1} \partial S_{xx}/\partial x\) and \(f\bar{v}\). The cross-shelf wind stress term \(\tau_{se}(\rho_o h)^{-1}\) is reduced by about 40% at the 13-m site relative to the 8-m site due to the increase in water depth (Figure 10a, Table 4). As in

Table 3. Results of linear regression analysis of forcing, \(F = (-\partial P/\partial y)/\rho_o + \tau_{se}/(\rho_o h)\), with response, \(R = \partial \bar{v}/\partial t + \tau_{bu}/(\rho_o h)\), in along-shelf momentum balance of the form \(R = aF + b\). Results of regression between \(\tau_{se}/(\rho_o h)\) and \(\tau_{bu}/(\rho_o h)\) are also given. Analysis includes only periods when sites are seaward of the surf zone. All correlations are different from zero at the 95% confidence level and 95% confidence for \(a\) and \(b\) are shown. Units are \(10^{-2}\) m/s² for intercepts.

<table>
<thead>
<tr>
<th>Site</th>
<th>(a)</th>
<th>(b)</th>
<th>Correlation</th>
<th>(a)</th>
<th>(b)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-m</td>
<td>0.94±0.46</td>
<td>0.08±0.41</td>
<td>0.69</td>
<td>0.98±0.36</td>
<td>0.01±0.38</td>
<td>0.82</td>
</tr>
<tr>
<td>8-m</td>
<td>0.71±0.25</td>
<td>-0.13±0.20</td>
<td>0.78</td>
<td>0.86±0.20</td>
<td>-0.02±0.18</td>
<td>0.89</td>
</tr>
<tr>
<td>13-m</td>
<td>0.63±0.18</td>
<td>-0.06±0.10</td>
<td>0.80</td>
<td>0.88±0.17</td>
<td>0.02±0.10</td>
<td>0.91</td>
</tr>
<tr>
<td>21-m</td>
<td>0.54±0.16</td>
<td>0.01±0.06</td>
<td>0.72</td>
<td>0.75±0.17</td>
<td>0.08±0.08</td>
<td>0.88</td>
</tr>
<tr>
<td>26-m</td>
<td>0.56±0.17</td>
<td>0.01±0.05</td>
<td>0.73</td>
<td>0.78±0.15</td>
<td>0.08±0.05</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 4. Standard deviations of terms in the cross-shelf momentum balance (1). Statistics for the 4-m and 8-m sites are for periods when these sites are seawards of the surf zone. The values in parentheses for \((\rho_o h)^{-1} \partial S_{xx}/\partial x\) include all periods. Units are \(10^{-5}\) m/s².

<table>
<thead>
<tr>
<th>Site</th>
<th>(\partial \bar{v}/\partial x)</th>
<th>(f\bar{v})</th>
<th>(\partial \bar{v}/\partial x)</th>
<th>(\partial \bar{v}/\partial x)</th>
<th>(\partial \bar{v}/\partial x)</th>
<th>(\partial \bar{v}/\partial x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-m</td>
<td>0.00±0.01</td>
<td>1.10±0.10</td>
<td>–</td>
<td>0.90±0.10</td>
<td>0.40±0.10</td>
<td>9.60±2.10 (221.5)</td>
</tr>
<tr>
<td>8-m</td>
<td>0.00±0.01</td>
<td>1.70±0.10</td>
<td>–</td>
<td>0.80±0.10</td>
<td>0.20±0.10</td>
<td>3.60±1.10 (3.5)</td>
</tr>
<tr>
<td>13-m</td>
<td>0.00±0.01</td>
<td>1.60±0.10</td>
<td>2.10±0.10</td>
<td>0.40±0.10</td>
<td>0.10±0.10</td>
<td>1.50±0.10</td>
</tr>
<tr>
<td>21-m</td>
<td>0.00±0.01</td>
<td>1.40±0.10</td>
<td>1.80±0.10</td>
<td>0.30±0.10</td>
<td>0.10±0.10</td>
<td>0.20±0.10</td>
</tr>
<tr>
<td>26-m</td>
<td>0.01±0.01</td>
<td>1.10±0.10</td>
<td>1.40±0.10</td>
<td>0.30±0.10</td>
<td>0.10±0.10</td>
<td>0.60±0.10</td>
</tr>
</tbody>
</table>
suggest that $\partial S_{xx}/\partial x$ is important in the cross-shelf momentum balance offshore of the surf zone, in depths at least as great as 13 m.

At the 21-m and 26-m sites $f\bar{v}$ and $\rho_o^{-1}\partial P/\partial x$ are highly correlated with linear regression coefficients near one (Table 5) and are larger than the other terms (Table 4). The cross-shelf momentum balance is thus consistent with geostrophy (Figure 11). The standard deviations of $r_{xy}/\rho_o h$ and $(\rho_o h)^{-1}\partial S_{xx}/\partial x$ are less than 1/5 of $f\bar{v}$ in 21-m depth (Table 4), and the correlation between $f\bar{v}$ and $\rho_o^{-1}\partial P/\partial x$ is not altered significantly by including either in the balance. At the 26-m site, the standard deviation of the estimated $(\rho_o h)^{-1}\partial S_{xx}/\partial x$ is larger (about 1/2 of $f\bar{v}$) than at the 21-m site because the local bottom slope is steeper (h_x in (15), discussed below). However, the correlation is not increased by including $\partial S_{xx}/\partial x$, possibly because of the disparity in the spatial scales used to estimate $\partial S_{xx}/\partial x$ and $\partial P/\partial x$. The local bottom slope in 26 m depth is used to estimate $\partial S_{xx}/\partial x$, but the local slope is larger and of different sign than the average bottom slope over the cross-shelf separation of the pressure gauges (at the 5-m and 33-m sites) used to estimate $\partial P/\partial x$ at the 26-m site (Figure 2).

The baroclinic component of the cross-shelf pressure gradient often opposes the barotropic component at the 13-m and 21-m sites where bottom pressure gradient and density gradient estimates could be made (Figure 12). Correlations between the barotropic and baroclinic pressure gradients are -0.82 at both sites. The standard deviations indicate that the depth-averaged baroclinic pressure gradient balances 30-45% of the barotropic pressure gradient. Cross-shelf density gradients (baroclinic pressure gradients) in October, when stratification is relatively weak (Figure 4), are similar in magnitude to cross-shelf density gradients in August when stratification is relatively strong (Figure 12).

The importance of the baroclinic contribution to the depth-averaged cross-shelf pressure gradient and the tendency for a geostrophic balance suggests the vertical shear in the along-shelf velocity may be in thermal wind balance over the inner shelf,

$$\frac{\partial v}{\partial z} = -\frac{g}{\rho_o f} \frac{\partial \rho}{\partial x}. \quad (6)$$

Although (6) has been shown to hold in the middle of the water column at mid shelf [Winant et al., 1987], it is not obvious that this balance will hold over the shallow inner shelf where no part of the water column is distant from the surface and bottom. The moored array observations provide five locations where the two terms in this balance can be compared (Table 6). In each case, $\partial P/\partial x$ is estimated as the difference between densities at the same depth on adjacent moorings divided by the mooring separation. (Density at 4.4 m depth for the 13-m site was computed by linearly interpolating be-

Table 5. Regression analysis of $f\bar{v}$ with $(\partial P/\partial x)/\rho_o$, terms in cross-shelf geostrophic balance. All correlations are significantly different from zero at the 95% confidence level and 95% confidence intervals for regression coefficients are shown. † Regression analysis of $f\bar{v} - \frac{\partial S_{xx}}{\partial x}$ with $(\partial P/\partial x)/\rho_o$.

<table>
<thead>
<tr>
<th>Site</th>
<th>Correlation</th>
<th>Regression Coefficient</th>
<th>Regression Coefficient Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-m</td>
<td>0.63</td>
<td>0.82 ± 0.38</td>
<td>63</td>
</tr>
<tr>
<td>† 13-m</td>
<td>0.80</td>
<td>1.34 ± 0.41</td>
<td>48</td>
</tr>
<tr>
<td>21-m</td>
<td>0.92</td>
<td>1.16 ± 0.22</td>
<td>50</td>
</tr>
<tr>
<td>26-m</td>
<td>0.93</td>
<td>1.19 ± 0.15</td>
<td>78</td>
</tr>
</tbody>
</table>

8-m depth, $-(\rho_o h)^{-1}\partial S_{xx}/\partial x$ and $f\bar{v} + (\rho_o h)^{-1}\tau_{xy}$ are opposed during the strongest events, and in 13-m depth cancellation is nearly complete in some cases (e.g. September 5, October 4 and October 10-11 in Figure 10b). The observed pressure gradients are qualitatively consistent with this cancellation (Figure 10c). The Coriolis force $f\bar{v}$, $\partial S_{xx}/\partial x$, and $\partial P/\partial x$ are mutually correlated. Linear regression of $f\bar{v}$ and $\rho_o^{-1}\partial P/\partial x$ yields a significant correlation (0.63) and a regression coefficient of 0.82 (Table 5), suggesting a geostrophic balance. However, $\rho_o^{-1}\partial P/\partial x$ is better correlated (0.80) with $(f\bar{v} - (\rho_o h)^{-1}\partial S_{xx}/\partial x)$ than with $f\bar{v}$ alone. These results (Tables 4 and 5, and Figures 9 and 10)
between the 1.5 and 7.6 m densities, Figure 2.) Vertical shears \(\frac{\partial v}{\partial z} \), estimated from current meters vertically bracketing the \(\frac{\partial p}{\partial x} \) at both moorings, are substantial, corresponding to along-shelf velocity differences of 15 - 40 cm/s across the water column.

The vertical shear in the middle of the water column is approximately in thermal wind balance (Table 6, Figure 13). Standard deviations of the two terms in (6) are roughly equal at each location and increase toward the coast, consistent with strong cross-shelf density gradients in the vicinity of the 8-m and 13-m sites owing to the Chesapeake Bay plume and, during August, to upwelling/downwelling of the pycnocline. The two terms in (6) are correlated at all sites. Inaccuracies in the interpolation of density at the 13-m site may contribute to the lower correlations for the 8-m and 13-m pair. The large separation between the 21-m and 26-m sites (10 km) relative to the cross-shelf scale of the plume (estimated from shipboard surveys) probably contributes to the lower correlations for this pair. Despite the difficulties of comparing vertical shears estimated at pairs of mooring sites with finite difference estimates of the density gradient between mooring sites, the observations indicate that much of the subtidal vertical shear variability is in thermal wind balance in depths as shallow as 10 m.

4. Discussion

The momentum balances suggest three distinct dynamical regions: the surf zone, inner shelf, and mid shelf. In the surf zone, forcing by wave-radiation stress gradients dominates both along-shelf and cross-shelf momentum balances. Over the inner shelf, offshore of the surf zone to about the 13-m isobath, the along-shelf momentum balance is primarily between surface wind and bottom stresses, with along-shelf pressure gradients usually a smaller contribution. The cross-shelf momentum balance is between cross-shelf pressure gradients, wave-radiation stress gradi-
Figure 8. Time series of the along-shelf forcing \((\tau_{xy}/(\rho_s h)) - (\partial P/\partial y)/\rho_s\) and the response \((\partial v/\partial t + \tau_{xy}/(\rho_s h))\) at each mooring site. The bottom stress \(\tau_{xy}\) is estimated using the water value seawards of the surf zone (9 and 10), and \(\partial S_{xy}/\partial x\) is not included in the forcing. Thus, when a site is within the surf zone (shaded regions), discrepancies may be large.
ents, Coriolis forces, and to a lesser extent cross-shelf wind stresses. At the mid shelf 21-m and 26-m sites, the along-shelf balance is between wind stresses, along-shelf pressure gradients, bottom stresses, and accelerations. The cross-shelf momentum balance is geostrophic. These simplified momentum balances are used here to examine the relationship between the forcing (winds, waves, and along-shelf pressure gradients) and the response (along-shelf currents and cross-shelf pressure gradients), and to derive simple scalings relevant to other locations. The along-shelf pressure gradient \(\nabla^* \) is treated as a forcing rather than as a response because the observed \(\partial P/\partial y \) (along both the 5-m and 21-m isobaths) are not correlated with the local wind stress. As indicated in Section 3.1, part of the variability in \(\partial P/\partial y \) along the 5-m isobath is associated with the Chesapeake Bay plume events [Rennie et al., 1999], and some of the variability is likely also a response to the large-scale wind field [Wang, 1979; Noble and Butman, 1979; Yanovsky and Garvine, 1998]. In either case, \(\partial P/\partial y \) is driven by large scale processes not included in the present forcing terms.

4.1. Along-shelf velocity response

The depth-averaged along-shelf momentum balance (2) is recast here to relate the depth-averaged along-shelf velocity to the forcing

\[
\frac{\partial \vec{v}}{\partial t} + \frac{v \vec{v}}{h} \approx -\frac{1}{\rho_o} \frac{\partial P}{\partial y} + \frac{\tau_{by}}{\rho_o h} - \frac{1}{\rho_o h} \frac{\partial S_{xy}}{\partial x}. \tag{7}
\]

It has been assumed that: turbulent Reynolds’s stresses, nonlinear advective terms, and the Coriolis term \(f \vec{v} \) (see Section 3.1) are small; a linear drag law (5, Appendix A.3) provides an accurate estimate of the bottom stress \(\left(\rho_o h \right)^{-1} \tau_{by} \) in (2); and the near-bottom along-shelf velocity \(v_b \) is approximately equal to, or at least well correlated with, the depth-averaged along-shelf velocity \(\vec{v} \). At each site \(v_b \) and \(\vec{v} \) are well correlated (0.86 to 0.99) and \(v_b \) ranges from 0.5\(\vec{v} \) to 0.8\(\vec{v} \) based on a linear regression analysis. Given that \(v_b \)
and \(\hat{v} \) are well correlated the difference in magnitude may be accounted for by adjusting \(r \).

Integrating (7) in time yields [Lentz and Winant, 1986]

\[
\hat{v}_P = \int_{t_0}^{t} \left(-\frac{1}{\rho_o} \frac{\partial P}{\partial y} + \frac{\tau_{xy}}{\rho_o h} - \frac{1}{\rho_o h} \frac{\partial S_{xy}}{\partial x} \right) e^{-\frac{(t-t_0)}{T_f}} dt' + \hat{v}_o e^{-\frac{(t-t_0)}{T_f}}
\]

(8)

where \(T_f = h/r \) is a frictional time scale and \(\hat{v}_o = \hat{v}(t = t_0) \). Based on (7) or (8), two factors determine the character of \(\hat{v} \) and its cross-shelf structure, the relative magnitudes of the forcing terms and the forcing time scale relative to the frictional time scale \(T_f \). As noted above, \(\partial S_{xy}/\partial x \) dominates the along-shelf forcing in the surf zone. Seaward of the surf zone, \(\partial S_{xy}/\partial x \) is small and the relative importance of \(\tau_{xy}/h \) and \(\partial P/\partial y \) depends on their cross-shelf structure. In the absence of cross-shelf variations, \(\partial P/\partial y \) will become increasingly more important relative to \(\tau_{xy}/h \) as the depth increases [e.g. Lentz and Winant, 1986], and this is qualitatively true in the present observations (compare the cross-shelf variation of \(\tau_{xy}/h \) with that of \(\partial P/\partial y \) in Table 2).

If the forcing varies on time scales that are long compared with \(T_f \) then the response is basically frictional. The along-shelf flow is approximately in phase with the forcing and quasi-steady in the sense that the accelerations are dynamically negligible. In this case, from (7), \(\hat{v}_P \approx T_f(-\rho_o^{-1} \partial P/\partial y + \tau_{xy}/\rho_o h + (\rho_o h)^{-1} \partial S_{xy}/\partial x) \). In contrast, if the forcing time scale is short compared to \(T_f \) then the response lags the forcing and is weaker than the steady response. The three forcing terms (sampled hourly) have decorrelation time scales of 1-2 days. The results in Section 3 suggest that roughly

\[
r = 5 \times 10^{-3} \text{m/s} \quad h \leq 3.0H_{\text{sig}}
\]

(9)

(within the surf zone),

\[
5 \times 10^{-4} \text{m/s} \quad h > 3.0H_{\text{sig}}
\]

(10)
Table 6. Comparison of terms in the thermal wind balance (6). Standard deviation units are 10^{-2}s$^{-1}$. All correlations are significantly different from zero at the 95% confidence level.

<table>
<thead>
<tr>
<th>Mooring Sites</th>
<th>Meters Below Surface</th>
<th>Standard Deviations</th>
<th>Correlation Coefficient</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 - 13</td>
<td>4.4 m</td>
<td>3.6</td>
<td>3.3</td>
<td>0.65</td>
</tr>
<tr>
<td>13 - 21</td>
<td>7.6 m</td>
<td>2.5</td>
<td>2.5</td>
<td>0.89</td>
</tr>
<tr>
<td>13 - 21</td>
<td>12.7 m</td>
<td>1.1</td>
<td>0.9</td>
<td>0.72</td>
</tr>
<tr>
<td>21 - 26</td>
<td>7.6 m</td>
<td>0.9</td>
<td>1.1</td>
<td>0.62</td>
</tr>
<tr>
<td>21 - 26</td>
<td>12.7 m</td>
<td>0.8</td>
<td>0.6</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Within the surf zone, assuming $h = 8$ m or less, T_f is 30 minutes or less, short compared with the forcing time scale and consistent with previous observations in which surf zone flows responded within a few hours to changes in forcing [Feddersen et al., 1998]. Seawards of the surf zone, $h = 4$–26 m and (10) implies $T_f = 2$–14 hours. Thus, at mid shelf T_f approaches the forcing decorrelation time scale and the flow response may detectably lag the forcing. The observed time lags for maximum correlation between subtidal flow \vec{v} and forcing $(-\partial P/\partial y + \tau^y/h + h^{-1}\partial S_{xy}/\partial x)$ are 2 hr, 7 hr, and 9-11 hr for the 4-m, 8-m, and deeper sites, respectively. The increase in the magnitude of the lags with increasing water depth is consistent with (7) and (9 and 10).

Estimates of \vec{v}_P from the forcing were made using (8) and the prescription for r in (9 and 10). The frictional time scale T_f in the surf zone is shorter than the hourly sample rate, therefore \vec{v}_P was set equal to the forcing times T_f when the 4-m or 8-m sites were in the surf zone. Unfiltered hourly time series of \vec{v}_P and observed \vec{v} for each site are similar (Figure 14). Root-mean-square (rms) differences are about 10 cm/sec, correlations are 0.74 to 0.86, and linear regression slopes range from 0.92 to 1.20.

The \vec{v}_P estimates reproduce the observed cross-shelf variations in \vec{v}. For example, on August 20 and 23, strong alongshelf currents are driven in part by an along-shelf pressure gradient associated with the Chesapeake Bay plume (Section 3.1). The observed and predicted currents are maximum at the 13-m site (about -40 cm/s and -70 cm/s on 20 and 23 August, respectively). Flows are weaker at the 21-m and 26-m sites because the pressure gradient associated with the plume does not extend offshore to these sites. The pressure gradient is present onshore of the 13-m site, but the response decreases as the depth decreases from 13-m to 4-m because the pressure gradient body force is balanced by bottom stress (e.g. $\tau \vec{v}_P \approx h \partial P/\partial y$ from (7)). The estimated velocity \vec{v}_P does not reproduce \vec{v} as well during a similar plume event around September 20, probably because
the array does not resolve cross-shelf variations in $\partial P/\partial y$ during this event. The \vec{v}_P estimates using the bottom stress formulation (9 and 10) does reproduce the flow reversal on September 22 (when $\partial S_{xy}/\partial x$ opposes the wind) between the surf zone ($\vec{v} = +80$ cm/s at the 4-m site) and the inner shelf ($\vec{v} = -50$ cm/s at the 13-m site). The flow reversal observed between the 4-m and 21-m sites on October 14-15 is also predicted. The crude drag formulation (9 and 10) contributes to errors in the magnitude of \vec{v}_P in the transition region between the surf zone and the inner shelf. Errors in the sign of \vec{v}_P (e.g., at the 8-m site on 22 September where $\vec{v}_P = +15$ cm/s and $\vec{v} = -30$ cm/s) may occur because of inaccurate estimation of the small residual stress when opposing stresses from wave breaking and wind are about equal.

Overall, these comparisons (e.g., Figure 14) suggest that (8) estimates \vec{v} well, given the forcing and the prescription (9 and 10) for the bottom drag coefficient. It is somewhat surprising that the linear drag formulation (9 and 10) works this well, given its likely dependence on waves, bottom roughness, and stratification. To determine the sensitivity of \vec{v}_P to variations in τ (seaward of the surf zone), the rms difference between \vec{v}_P and \vec{v} was computed as a function of τ over the range $1 - 20 \times 10^{-4}$ m/s. Seaward of the surf zone, the rms error is not sensitive to τ between $3 - 6 \times 10^{-4}$ m/s. The rms difference is more sensitive to low values of τ than to high values. Clearly, bottom stress remains a poorly understood aspect of the surf zone and inner shelf dynamics.

4.2. Cross-shelf pressure gradient response

The cross-shelf pressure gradient balances wave, wind, and Coriolis (associated with the along-shelf flow) forces

$$\frac{\partial P}{\partial x} = -\frac{1}{h} \frac{\partial S_{xx}}{\partial x} + \frac{\tau_{mx}}{h} + \rho_o f \vec{v}.$$

(11)

Over mid shelf the present (Section 3.2) and previous results indicate that the cross-shelf balance (11) is approximately geostrophic. However, as the depth decreases the cross-shelf wind and radiation stresses become more important. The cross-shelf gradient of the depth-averaged pressure may be estimated from (11) given cross-shelf distributions of depth, wave radiation stress S_{xx}, cross-shelf wind stress, and the along-shelf current \vec{v} (which may be estimated using (7) and (8), given the wave radiation stress S_{xy}, along-shelf wind stress, and along-shelf pressure gradient). If, on the inner shelf (seaward of the surf zone, where $\partial S_{xy}/\partial x$ is negligible), the wind stress is approximately equal to the bottom stress in the along-shelf momentum balance (e.g., $\vec{v} \approx \tau_{my}/(\rho_o r)$ in (7), see Section 3.1) then the cross-shelf pressure gradient (11) depends only on the wave radiation...
Figure 14. Time series (unfiltered hourly) of depth-averaged along-shelf velocities at each site. Red curves are observed \tilde{v} and blue curves are $v_{p\text{ estimated}}$ estimated from forcing using (8) and (9 and 10). The vertical scale is different for the 4-m site.
stress S_{xx} and the local wind stress

$$\frac{\partial P}{\partial x} \approx -\frac{1}{h} \frac{\partial S_{xx}}{\partial x} + \frac{\tau^{xy}}{h} + \frac{f}{r} \tau^{xy}.$$ \hspace{1cm} (12)

To examine the relative magnitude of the three terms on the right-hand side of (12), consider first the ratio of the cross-shelf wind stress to the Coriolis force is

$$\frac{\tau^{xy}}{h} = \frac{r}{f} \tan(\phi)$$ \hspace{1cm} (13)

where an along-shelf wind stress direction corresponds to $\phi = 0$. The depth h where the magnitude of the two terms are equal as a function of the wind stress orientation, for mid latitudes ($f = 10^{-4} \text{s}^{-1}$) and a typical drag coefficient seaward of the surf zone ($r = 5 \times 10^{-4} \text{m/s}$) are shown in Figure 15a. For winds oriented 45$^\circ$ relative to the coastline, as is often the case at Duck, the cross-shelf wind stress is about half the Coriolis force in 12-m depth and the terms are approximately equal in 6-m depth (consistent with observations, Figures 10a and 9a). The cross-shelf wind stress will be relatively more important at lower latitude or if the drag coefficient is larger.

Observational studies concluding that the cross-shelf momentum balance is primarily geostrophic are often in depths greater than 20 m, and do not consider the contribution of wave-driven set-down associated with nonbreaking surface waves in variable depth. In the present observations the wave-radiation stress gradients are at least as large as the cross-shelf wind stress and the Coriolis force in 0(10 m) depth seawards of the surf zone (Figures 9b and 10b). The generality of this result is assessed by estimating the size of $h^{-1} \partial S_{xx}/\partial x$ relative to the Coriolis term $f \tau^{xy}/r$ and the cross-shelf wind stress τ^{xy}/h.

Assuming normally incident waves for simplicity, the radiation stress given by (A4) is

$$S_{xx} = E \left(\frac{2c_g}{c} - \frac{1}{2} \right)$$ \hspace{1cm} (14)

where the phase speed $c = \omega/k$ and the group velocity $c_g = \partial \omega / \partial k$ follow from the linear wave dispersion equation

$$\frac{\omega^2 h}{g} = k h \tanh(kh)$$

where ω and k are the wave radian frequency and wavenumber, respectively. Energy conservation (for the present case of nonbreaking waves) yields

$$E = \frac{(Ec_g)_{\infty}}{c_g} = \frac{\rho_o g H_{\infty}^2 \sigma_{\infty}}{16(\tanh(kh) + kh \sech^2(kh))}$$

Figure 15. (a) Depth where Coriolis force associated with wind-driven along-shelf flow $|f \vec{v}|$ equals the cross-shelf wind stress $|\tau^{xy}|/\rho_o h$, as a function of wind direction (13). An along-shelf directed wind corresponds to 0$^\circ$. (b) Depth where $|f \vec{v}|$ equals the radiation stress gradient $(\rho_o h)^{-1} \partial S_{xx}/\partial x$, as a function of $H_{\infty}^2 \sigma_{\infty} h / \tau^{xy}$ (16). (c) Depth where $|\tau^{xy}|$ equals $|\partial S_{xx}/\partial x|$, as a function of $H_{\infty}^2 \sigma_{\infty} h / \tau^{xy}$ (17). Each curve in b) and c) corresponds to the indicated wave period. Terms estimated with $f = 10^{-4} \text{s}^{-1}$, $r = 5 \times 10^{-4} \text{m/s}$, and $\rho_o = 1023 \text{kg/m}^3$.

LENTZ ET AL.: MOMENTUM BALANCES ON THE NORTH CAROLINA INNER SHELF

18
with \(H_{\infty, \text{sig}}\) the deep water significant wave height. Substitution into (14) yields

\[
S_{xx} = \frac{\rho_c g H_{\infty, \text{sig}}^2 f(s)}{16}
\]

where \(s = kh\) and

\[
f(s) = \frac{1/2 + s \sec h(s) \csc h(s)}{\tanh(s) + s \sec h^2(s)}.
\]

Using the dispersion equation, \(s\) depends on the nondimensional depth \(\omega^2 h/g\). Differentiation yields

\[
\frac{1}{h} \frac{\partial S_{xx}}{\partial x} \frac{1}{16} \rho_c H_{\infty, \text{sig}}^2 \frac{\omega^4 h_x}{g} q(s)
\]

where

\[
q(s) = f'(s) \frac{\cot h(s)}{s(\tanh(s) + s \sec h^2(s))}.
\]

The ratio of the radiation stress term to the Coriolis term is thus

\[
\left(\frac{1}{h} \frac{\partial S_{xx}}{\partial x} \right) \frac{1}{\left(f \frac{\tau^x y}{r} \right)} = \frac{\rho_c R}{16 g f} \frac{H_{\infty, \text{sig}}^2 h_x}{\tau^x y} \cdot \omega^4 q(s).
\]

Similar calculations for the ratio of \(\partial S_{xx}/\partial x\) and \(\tau^{xx}\) yield

\[
\frac{\partial S_{xx}}{\partial x} / \tau^{xx} = \frac{\rho_c R}{16} \frac{H_{\infty, \text{sig}} h_x}{\tau^{xx}} \cdot \omega^2 p(s)
\]

where

\[
p(s) = \frac{\omega^2 h_q}{g} q(s) = \frac{f'(s)}{\tanh(s) + s \sec h^2(s)}.
\]

The functions \(q\) and \(p\) depend relatively strongly on \(\omega^2 h/g\) (Figure 16). For example, in shallow water \(p \approx h^{-5/2}\) and \(q \approx h^{-5/2}\). In contrast, for wind stresses that do not vary in the cross-shelf direction, the cross-shelf wind stress term \(\tau^{xx}/h\) varies as \(h^{-1}\) and the Coriolis term \(f \tau^y/r\) is constant. These ratios (17) and (18) suggest wave radiation stresses will dominate in very shallow water, even with non-breaking waves.

The depth where the ratio of the radiation stress to the Coriolis term equals unity (from (17)) is shown in Figure 15b, for mid latitudes and a typical value of the drag coefficient \((r = 5 \times 10^{-4} \text{ m/s})\), as a function of \(H_{\infty, \text{sig}} h_x/\tau^y\) for several wave periods. At Duck, \(H_{\infty, \text{sig}}^2\) and \(\tau^y\) are correlated such that their ratio is typically 0.2(20-40) m²/N. The beach slope between the 4-m and 13-m sites is roughly 0.01, so \(H_{\infty, \text{sig}}^2 h_x/\tau^y \approx 0.2 - 0.4\). Wave periods are 0(10s), so the ratio (17) is unity in about 15-20 m depth (Figure 15b), qualitatively consistent with the observation that the terms are about equal in 13-m depth (Figure 10b). For fixed \(H_{\infty, \text{sig}}^2 h_x/\tau^y\), the radiation stress term is important in deeper water as the surface wave period (and hence wavelength) increases (Figure 15b), reflecting the dependence of \(q\) on the nondimensional depth (Figure 16).

At mid latitudes, when the wind direction is not close to cross-shelf directed (e.g., when the wind direction < 60° in Figure 15a), the cross-shelf wind stress exceeds the Coriolis term only when \(h < 10\text{ m}\). However, the \(S_{xx}\) gradient term also usually exceeds the Coriolis term in depths less than 10 m (Figure 15b) and the \(S_{xx}\) gradient term increases rapidly as the depth decreases further (Figure 16). Under these circumstances, the Coriolis force dominates on the mid-shelf, the Coriolis and radiation stress terms are both important on the inner shelf, and the cross-shelf wind stress is never a dominant term. In the contrasting situation of a cross-shelf wind, the Coriolis term vanishes and the cross-shelf wind stress is larger than the radiation stress term offshore (Figure 15c). The depth where \(\tau^{xx}/h\) equals the radiation stress term depends on \(H_{\infty, \text{sig}}^2 h_x/\tau^{xx}\) and the wave period (18) and Figure 15c). The wave radiation stress gradient from an energetic ocean swell (e.g., 15 s period waves with \(H_{\infty, \text{sig}} = 3\text{ m}\) sloshing on a moderately sloping shelf (e.g., \(h_x = 0.005\)) will exceed the force of a strong cross-shelf wind stress (0.4 N/m², 10 m wind speed 15 m/s) in less than 30 m water depth (Figure 15c).

The above results (e.g., Figure 15b and 15c) suggest that \(\partial S_{xx}/\partial x\), \(\tau^{xx}/h\), and \(f \tau^y/r\) may be similar in magnitude seawards of the surf zone, in depths of O(10-30m). Within the surf zone, \(\tau^{xx}/h\) and \(f \tau^y/r\) are negligible because \(\partial S_{xx}/\partial x\) is orders of magnitude larger than seaward

Figure 16. The functions \(q\) (16) and \(p\) (18) versus the nondimensional depth \(\omega^2 h/g\).
of the surf zone [Longuet-Higgins and Stewart, 1964; Bowen et al., 1968]. Although, \(\partial S_{xy} / \partial x \) was neglected offshore of the surf zone, it can drive substantial along-shelf currents in the surf zone. Hence, in the surf zone (11) reduces to

\[
\frac{\partial P}{\partial x} \approx \frac{1}{h} \frac{\partial S_{xx}}{\partial x} - \frac{f}{\rho} \frac{\partial S_{xy}}{\partial x}
\]

using (7) with a surf zone balance between radiation stress gradients and bottom friction. The ratio of the two terms on the right-hand side of (19) is

\[
(\frac{f}{r}) \frac{\partial S_{xy}}{\partial x} = \frac{f h}{r} \sin(\theta) (\cos(2\theta) + 2)
\]

using (A2) and (A4), assuming shallow water waves \((c \sim c_g)\) and similar cross-shelf scales for the divergences, and with \(\theta = 0\) corresponding to normally incident waves.

The ratio of the frictional and Coriolis time scales \((f h / r = f T r)\) is about 0.1 for \(h = 5 m, r = 5 \times 10^{-5} m/s\), and \(f = 10^{-4} 1/s\). The other fraction involving the incident wave angle \(\theta\) is always less than 0.6, and for waves within 10° of normally incident \(0.1\) or less. Thus, (19) suggests that under most surf zone conditions the pressure gradient associated with wave-driven set-up will be at least an order of magnitude larger than the geostrophic pressure gradient associated with the wave-driven along-shelf current jet.

5. Summary

Estimates of terms in the along-shelf and cross-shelf momentum balances indicate three dynamically distinct regions: the surf zone, the inner shelf between the offshore edge of the surf zone and the 13-m isobath, and the mid shelf extending offshore of the 13-m isobath (Figure 17). Consistent with previous studies, breaking surface gravity waves provide the dominant forcing in the surf zone. The cross-shelf divergence in the cross-shelf component of the wave-radiation stress \(\partial S_{xx}/\partial x\) is much larger than the other estimated terms suggesting it is balanced by a cross-shelf pressure gradient (i.e. wave setup that could not be estimated with these data). The present estimates also support previous conclusions [Thornton and Guza, 1986; Feddersen et al., 1998] that the cross-shelf divergence in the along-shelf component of the wave-radiation stress \(\partial S_{xy}/\partial x\) is largely balanced by bottom stress. This balance requires a linear drag coefficient for the subtidal flow in the surf zone that is about 10 times larger than the drag coefficient seaward of the surf zone.

The cross-shelf momentum balance at mid shelf is predominantly geostrophic, the Coriolis force due to the along-shelf current balances the cross-shelf pressure gradient, as found elsewhere [Brown et al., 1985, 1987; Lee et al., 1984, 1989]. At this site the along-shelf flow is geostrophic into fairly shallow water, the 21-m isobath. The along-shelf momentum balance at mid shelf is more complex. The wind stress and the along-shelf pressure gradient terms are similar in magnitude and are balanced by both accelerations and bottom stress, consistent with previous studies [Allen and Smith, 1981; Lentz and Winant, 1986; Lee et al., 1984, 1989; Lentz, 1994].

Between the surf zone and mid shelf is a transition region referred to as the inner shelf, here extending roughly from the 4-m to the 13-m isobath. The along-shelf momentum balance over the inner shelf is predominantly between wind and bottom stresses, consistent with the few previous studies of the momentum balance in 10 m to 15 m of water [Lentz and Winant, 1986; Lee et al., 1989]. Along-shelf pressure gradients were important over the inner shelf during a few events associated with a low-salinity plume from Chesapeake Bay, approximately 100 km north of the study site [Rennie et al., 1999]. In the cross-shelf direction, the Coriolis force due to the along-shelf current, \(\partial S_{xx}/\partial x\) from the shoaling of unbroken surface gravity waves, and the cross-shelf pressure gradient all have similar magnitudes. The cross-shelf wind stress is never a dominant term. The cross-shelf wind stress is similar in magnitude to the Coriolis force at the 8-m site, consistent with the results of Lee et al. [1989] at 10 m water depth in the South Atlantic Bight. However the radiation stress gradient \(\partial S_{xx}/\partial x\), a term not considered by Lee et al. [1989], dominates at the 8-m site. Assuming the cross-shelf pressure gradient balances the other terms, the pressure gradient may be thought of as a superposition of a geostrophic along-shelf flow and wave setup. The strongest along-shelf currents coincided with the largest surface waves, and geostrophic setup (southeastward flows) and wave setup approximately cancelled in 13-m depth, resulting in a nearly flat mean sea surface during some events.

On both the inner and mid shelf, the depth-averaged
cross-shelf pressure gradient includes a baroclinic component (cross-shelf density gradient) that balances about one-third to one-half of the barotropic component (cross-shelf sea-surface slope). This contrasts with results for winter in the South Atlantic Bight where of estimates of the baroclinic component (from shipboard CTD surveys) were small compared to the barotropic component [Lee et al., 1984, 1989]. The baroclinic cross-shelf pressure gradient is in thermal wind balance with the vertical shear in the along-shelf flow in water as shallow as 10 m.

The depth-averaged cross-shelf velocities are too small to estimate accurately from the observations, but the tendency for the along-shelf momentum balance to close without including the Coriolis force $f u$ (Figures 8 and 14) suggests $f u$ is not a large term in the along-shelf momentum balance. Several previous studies have found similar results for the mid and inner shelf [Allen and Smith, 1981; Lentz and Winant, 1986; Lee et al., 1989], though Lee et al. [1984, 1989] find $f u$ is large over the outer shelf in the South Atlantic Bight. In general, the depth-averaged cross-shelf flow remains poorly understood. If $f u$ is small, the along-shelf and cross-shelf depth-averaged momentum balances decouple and the along-shelf momentum balance in these three regions provides a simple estimate of the depth-averaged along-shelf current in terms of the forcing, i.e. along-shelf wind and wave stresses and the along-shelf pressure gradient. This simple estimate reproduces accurately the observed depth-averaged along-shelf current and its cross-shelf variation from the surf zone to mid shelf given a linear drag coefficient of 5×10^{-3} m/s within the surf zone and 5×10^{-4} m/s seaward of the surf zone.

Appendix

The procedure for estimating terms in the depth-averaged momentum balances (1) and (2) is described in Appendix A.1. Uncertainties in the estimates are discussed in Appendix A.2 and bottom stress estimates from the linear drag law are compared to log-profile estimates in Appendix A.3.

A1. Estimation of Terms

Terms in the momentum balances are estimated using the hourly data and then low-pass filtered (half-power point 38 hours) to focus on subtidal variability. Vertical integrals are estimated using a trapezoidal rule and assuming no vertical variations near the boundaries to extrapolate to the surface and bottom.

Accelerations

Time derivatives are estimated as centered differences over two hour intervals.

Pressure Gradients

The depth-average pressure gradient in (1,2) is estimated from the bottom pressure and density data by substituting (4) into (3) or the equivalent equation for $\partial P/\partial y$. The density term in (3) is estimated more easily from the moored observations by noting that

$$\int_{-h}^{0} \rho g (1 + \frac{z}{h}) dz = \frac{\partial}{\partial x} \int_{-h}^{0} \rho g dz + \frac{1}{h} \frac{\partial}{\partial x} \int_{-h}^{0} \rho g dz dz. \quad (A1)$$

The integrals on the right-hand side are estimated for each mooring site where density estimates are available. The cross-shelf gradients of the bottom pressure and the density integrals are estimated as finite differences roughly centered on the site of interest. For example, the cross-shelf pressure gradient estimate for the 21-m site is the difference between bottom pressure and density estimates from the 26-m and 5-m sites (bottom pressure at the 5-m site and density from the FRF pier site) divided by the separation. The 13-m estimate is from the 21-m and 5-m sites and the 26-m estimate is from the 33-m and 5-m sites (Figure 2). Accurate cross-shelf pressure gradients can be made only for the 13-m, 21-m and 26-m sites. The bottom pressure and density measurements at the 13-m and 5-m sites were too close together (separation 1 km) to make reliable estimates of the depth-average pressure gradient. There are bottom pressure, but no density measurements, offshore of the 26-m site (Figure 2). Therefore the density gradient term in (3) for the 26-m site is estimated using observations from the 21-m and 26-m sites.

Along-shelf pressure gradients are estimated along the 5-m and the 21-m isobaths using data from the along-shelf pressure/density array (Figure 1). Density along the 5-m isobath is assumed vertically uniform because temperature and conductivity were measured at only one depth. Pressure gradients along the 5-m isobath are estimated as differences between measurements from the sites 17 km north and south of the central line. Pressure gradients along the 21-m isobath are estimated as differences between measurements from the sites 32 km north and 27 km south of the central line. Pressure gradient estimates from different pairs of bottom pressure sensors along either the 5-m or 21-m isobaths yielded similar estimates. The pressure gradient estimate along the 5-m isobath is compared with the other terms in the along-shelf momentum balance from the 4-m, 8-m and 13-m sites and the pressure gradient along the 21-m isobath to terms from the 21-m and 26-m sites.

Wind, Bottom, and Wave-Radiation Stresses

The wind stress is estimated using a neutral drag law [Large and Pond, 1981] and the FRF pier winds. Other neutral and non-neutral bulk estimates [Fairall et al., 1996] give nearly identical wind stresses [Austin, 1998]. No attempt has been made to account for the influence of waves and the
shallowness of the water in the drag law used because the dependence of the drag coefficients on these effects is not understood well [Geernaert, 1988]. The FRF pier winds are used because there is a continuous time series over the duration of the study and the pier wind measurements are nearly identical to the wind measurements at the 21-m site (magnitude of the vector correlation is 0.98).

Bottom stress is estimated assuming a linear drag law (5) with \(r = 5 \times 10^{-4} \text{ m/s} \). This choice is motivated by simplicity of the drag law. The poor understanding of the factors influencing bottom stress in the surf zone and inner shelf. Bottom stress estimates from (5) are compared with log-profile estimates using bottom tripod measurements at the 21-m site in Appendix A.3.

Wave-radiation stresses are estimated in 8-m depth from the FRF wave-directional array data and a directional-moment-estimation technique [Elgar et al., 1994]. To estimate \(S_{xy} \) at other locations, the depth and surface wave properties are assumed not to vary in the along-shelf direction, and the wave field is assumed narrow-banded in both frequency and direction. In this case [Longuet-Higgins and Stewart, 1964]

\[
S_{xy} = E c_y \sin(2\theta)/(2c),
\]

(A2)

where \(E = \rho_o g H_{sig}^2/16 \) is the wave energy, \(H_{sig} \) is the significant wave height, \(\rho_o \) is a reference density, \(g \) is gravitational acceleration, \(c_y \) and \(c \) are the (linear theory) group and phase velocities, respectively, at the peak wave frequency. The angle \(\theta \) in 8-m depth is chosen such that \(S_{xy} \) from (A2) equals the measured \(S_{xy} \) in 8-m depth (using values of \(E \), and of \(c_y \) and \(c \), based on the peak frequency, measured in 8-m depth) [Thornton and Guza, 1986].

The cross-shelf gradient in \(S_{xy} \) at each measurement site, using (A2) and Snell’s Law is given by

\[
\frac{\partial S_{xy}}{\partial x} = \epsilon \sin(\theta)/c
\]

(A3)

where the wave dissipation \(\epsilon = \partial(E c_y \cos(\theta))/\partial x \) is estimated using the model of Whitford and Thornton [Church and Thornton, 1993], with \(B = 0.72 \) and \(\gamma = 0.3 \) [Chen et al., 1997]. The modeled dissipation rate depends linearly on the local bottom slope (estimated from bathymetric surveys, Figure 2) and on the local wave energy (obtained by applying linear theory to the bottom pressure spectrum at sea-swell frequencies measured near each mooring/tower.)

Cross-shelf gradients of

\[
S_{xx} = E \left[\frac{c_y}{c} \left(1 + \cos^2(\theta) \right) - \frac{1}{2} \right]
\]

(A4)

were estimated similarly using estimates of the dissipation from the model and estimates of \(E \) and the peak wave frequency from observations at each site. When there is no wave breaking, \(S_{xy} \) gradients vanish, but \(S_{xx} \) gradients are nonzero [e.g. Longuet-Higgins and Stewart, 1964, and (16)].

A.2. Uncertainties

Uncertainties in the estimates described above cannot be quantified accurately because instrument performance in the field is not understood well and because spatial scales of variation are unknown. Nevertheless, a qualitative discussion of uncertainties provides some context for interpreting the estimates presented in Section 3.

Errors in the depth-averaged velocity estimates include current speed and direction measurement errors and errors in estimating the depth-averaged currents from a few vertically spaced current measurements. The current meters have a reported accuracy of 2-3 cm/s [Beardsley, 1987; Guza et al., 1988]. Uncertainties in orientation have a larger impact on the cross-shelf velocities than along-shelf velocities because the flows are strongly polarized (Table 1). The largest source of error in estimating depth-averages is probably extrapolation of the current profiles to the surface and bottom. However, comparison of the standard estimate at the 21-m site with an estimate incorporating near-surface OSCAR [Shay et al., 1998] and near bottom tripod (Appendix A.3) current measurements yielded rms differences in depth-averaged velocities of 1 cm/s. Maximum differences were 5 cm/s for hourly data and 3 cm/s for low-pass filtered data. This suggests depth-averaging at this site does not increase substantially the uncertainty in the estimates over the uncertainty in the individual current measurements. Current meter uncertainties include wave-induced biases that may affect all instruments on a mooring and thus it can not be assumed that depth-averaging will reduce the uncertainty from that for an individual current meter. Therefore \(\delta u = 3 \text{ cm/s} \) is the assumed uncertainty in both the currents and the depth-averaged currents. The subtidal accelerations have an estimated uncertainty of \(\delta u/\Delta t \), where \(\Delta t \) of 9 hours was chosen as approximately a quarter of the 38 hour cut-off period for the low-pass filter (Table A1). Estimated uncertainty in the Coriolis term is \(f \delta u \).

Parallel plate pressure ports were added to the Seagauges to reduce flow noise. Based on flume tests (flow speeds of 6-40 cm/s), and on ocean deployments of several sensors at the same site, the pressure measurements have a relative accuracy of 0.1-0.2 mb. The influence of waves on the pressure measurements is not known. Comparisons of the Seagauges and Setra pressure sensors at the 5-m and 21-m central line sites indicate relative accuracies between these pairs of \(\sim 1 \) mb. Uncertainties in the bottom pressure gradient terms are 100(\(\delta P_b/\Delta z \))/\(\rho_o \) (100 is the conversion from mb to N/m²), where \(\delta P_b \) is assumed to be 0.2 mb for Seagauge pairs and 1 mb for Seagauge-Setra pairs. Uncertainties in the density are
board CTD measurements and between adjacent instruments on the same mooring when the water column is thought to be well mixed. Uncertainties arise primarily from drift of the conductivity cells [Alessi et al., 1996]. Uncertainties in the depth-averaged densities due to having only two instruments at the northern and southern 21-m sites were estimated by comparing depth-averages using all four instruments at the central 21-m site with estimates using only two instruments. RMS differences were 0.25 kg/m³. Thus, $\delta \rho$ is assumed to be 0.1 kg/m³ except for the along-shelf gradient at the 21-m site where it is assumed to be 0.25 kg/m³. Uncertainties in the baroclinic pressure gradient are estimated as $\delta P/(\rho, \Delta x)$. There is additional uncertainty associated with cross-shelf variations in $\partial P/\partial y$ between 5 m and 13 m and between 21 m and 26 m because $\partial P/\partial y$ is only estimated along two isobaths.

Hourly wind stress estimates from the FRF pier and the 21-m site (separation ~5 km) have rms differences of 2–3 x 10⁻² N/m². These differences are presumably from both instrument inaccuracies and spatial variations in the wind which is assumed to be spatially uniform. Thus, the estimated uncertainty is $\delta \tau^x/(\rho, h)$ with $\delta \tau^x = 3 \times 10^{-2}$ N/m². Another major source of uncertainty is the drag coefficient in shallow water and its dependence on sea state and wind direction (fetch). A summary of drag coefficient estimates in shallow water by [Geernaert, 1988] suggests uncertainties of about 20%. Recent evidence suggests the drag coefficient over the inner shelf may be different for onshore and offshore winds [Friedrichs and Wright, 1998].

Uncertainties in the bottom stress term owing to uncertainties in the current measurements are $\delta \rho / h$. However, of more concern is the dependence of τ on factors such as waves, bottom roughness, and stratification, and more generally the appropriateness of a linear drag law for parameterizing bottom stress. A comparison of the linear drag and log-profile estimates of bottom stress at the 21-m site is given in

<table>
<thead>
<tr>
<th>Term</th>
<th>4-m</th>
<th>8-m</th>
<th>13-m</th>
<th>21-m</th>
<th>26-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta u / \Delta t$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$f \delta u$</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>$\delta P / (\rho, \Delta x)$</td>
<td>-</td>
<td>11.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>$\delta \rho / (\rho, \Delta x)$</td>
<td>-</td>
<td>0.9</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$\delta P / (\rho, \Delta y)$</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>$\delta \rho / (\rho, \Delta y)$</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
<td>-</td>
</tr>
<tr>
<td>$\delta \tau^x / (\rho, h)$</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$\delta \tau^z / (\rho, h)$</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table A1. A1. Estimated uncertainties in the terms of the cross-shelf and along-shelf momentum balances (1) and (2). Units are 10^{-5} m/s².

Fig. A1. Time series of along-shelf bottom stress at the 21-m site estimated using a linear drag law with $r = 5 \times 10^{-4}$ m/s and log-profiles from either a bottom tripod or a bottom tetrapod. Tetrapod-based estimates are shown during August, when a tripod and tetrapod were both deployed.

Figure A1. Time series of along-shelf bottom stress at the 21-m site estimated using a linear drag law with $r = 5 \times 10^{-4}$ m/s and log-profiles from either a bottom tripod or a bottom tetrapod. Tetrapod-based estimates are shown during August, when a tripod and tetrapod were both deployed.

Appendix A.3.

The radiation stress gradient estimates are crude. Errors are owing to uncertainties in the bottom slope, errors in linear theory, and errors in model based estimates of the breaking wave dissipation rate. The radiation stress gradient estimates for nonbreaking waves are probably accurate within 50%, but may be less accurate for breaking waves. When the fraction of waves breaking is low, but not negligible, as occurs in the region bordering the seaward edge of the surf zone, the true S_{xx} gradient changes sign and the estimates may have larger fractional errors and/or the wrong sign.

A3. Bottom Stress Estimates

The linear drag formulation used to estimate bottom stress is crude because it does not account for factors such as variability in bottom roughness and surface gravity waves. Bottom tripod and tetrapod [Kim et al., 1997] deployments at the 21-m site provide independent bottom stress estimates.

The 1-m tall tetrapods supported four Marsh-McBirney electromagnetic current meters sampling at 1 Hz for 1024 seconds every 4 hours, and an altimeter that determined the sensor elevations above the sea floor. There were 30-day tetrapod deployments during August and during October. The 5-m tall bottom tripods supported five BASS current meters [Williams et al., 1987] and seven thermistors. Currents were sampled nearly continuously at approximately 1.5 Hz. There were 30-day tripod deployments during July-August and during September. There is generally
good agreement between the nearest-bottom VMCM (elevation 1.5 m) on the 21-m mooring and the BASS tripod and EMCM tetrapod current measurements, with the exception of the October tetrapod deployment when along-shelf tetrapod velocities exceeded the VMCM velocities, despite being closer to the bottom. It is unclear which measurements are correct.

Bottom stresses are estimated from the tripod and tetrapod data using a log-profile technique [e.g. Kim et al., 1997]. Only the two sensors closest to the sea floor are used to estimate bottom stress as there is curvature in the speed profiles, perhaps because the water column is often stratified within a few meters of the bottom. Using the lowest three, rather than the lowest two sensors has little effect on the bottom stress estimates except during October when the profile curvature is persistent and strong.

The along-shelf bottom stress estimates from log-profiles and the linear drag law agree well (Figure A1). Zero-lag correlations are 0.79 or greater for each tripod/tetrapod deployment and for the combined time series (Table A2). The most notable discrepancies are the three events in October when the log-profile estimates yield bottom stresses that are about twice as large as the linear drag law (Figure A1). It is unclear which estimate is more accurate. If log-profile estimates of bottom stress are used instead of linear drag law estimates, the correlation between forcing and flow response at the 21-m site is slightly (though not significantly) increased, from 0.88 (Table 3) to 0.91. Correlations between linear and log-profile bottom stress estimates are smaller for the weaker cross-shelf component of bottom stress (Table A2), but the magnitudes of both estimates are similar and much smaller than other terms in the cross-shelf momentum balance (Table 4). As log-profile estimates are available only at the 21-m site, the linear drag law is used at all sites.

Acknowledgments. Pier end wind and 8-m wave observations were acquired by staff at the Field Research Facility of the U.S. Army Engineer Waterways Experiment Stations’ Coastal Engineering Research Center. Permission to use these data is greatly appreciated. Thanks to Drs. B. Raubenheimer and E. Gallagher for help collecting the 4-m and 8-m tower data. Financial support was provided by the Ocean Sciences Division of the National Science Foundation (Coastal Ocean Processes program) and by the Office of Naval Research (Coastal Dynamics and AASERT Programs).

References

Table A2

<table>
<thead>
<tr>
<th>Deployment</th>
<th>Filtered (\tau_{by})</th>
<th>Filtered (\tau_{bz})</th>
<th>Duration</th>
<th>Current Meter Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full time series</td>
<td>0.81*</td>
<td>0.45*</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Aug tetrapod</td>
<td>0.79*</td>
<td>0.39</td>
<td>20</td>
<td>0.06, 0.35, 0.66, 0.95</td>
</tr>
<tr>
<td>Oct tetrapod</td>
<td>0.87*</td>
<td>0.56</td>
<td>28</td>
<td>0.05, 0.34, 0.65, 0.94</td>
</tr>
<tr>
<td>Aug tripod</td>
<td>0.94*</td>
<td>0.75</td>
<td>12</td>
<td>0.24, 1.20, 2.55, 4.44</td>
</tr>
<tr>
<td>Sep tripod</td>
<td>0.89*</td>
<td>0.52</td>
<td>26</td>
<td>0.24, 0.60, 1.20, 2.55, 4.44</td>
</tr>
</tbody>
</table>

* denotes correlations significantly different from zero at the 95% confidence level.

S. Elgar, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543. (e-mail: elgar@whoi.edu)

F. Feddersen and R.T. Guza, Center for Coastal Studies Scripps Institution of Oceanography, University of California, La Jolla, CA 92093-0209. (e-mail: falk@coast.ucsd.edu; rguza@ucsd.edu)

T.H.C. Herbers, Dept. of Oceanography, Naval Postgraduate School, Monterey, CA 93943-5122 (e-mail: herbers@zee.oc.nps.navy.mil)

S. Lentz, Woods Hole Oceanographic Institution, MS 21, Woods Hole, MA, 02543. (e-mail: slentz@whoi.edu)

August 5, 1998; revised January 27, 1999; accepted February 24th, 1999.

This preprint was prepared with AGU’s LATEX macros v4, with the extension package ‘AGU’ by P. W. Daly, version 1.6b from 1999/08/19.