WHOI-2023-01

The Northwest Tropical Atlantic Station (NTAS): NTAS-20 Mooring Turnaround Cruise Report

Cruise on Board RV Pisces

November 4-28, 2021 Newport, RI - Pascagoula, MS

by

Sebastien Bigorre,¹ Ray Graham¹ ¹Woods Hole Oceanographic Institution, Woods Hole, MA

Woods Hole Oceanographic Institution Woods Hole, MA 02543

November 2021

Technical Report

Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA19OAR4320074.

Approved for public release; distribution unlimited.

Upper Ocean Processes Group Woods Hole Oceanographic Institution Woods Hole, MA 02543 UOP Technical Report 2023-01

WHOI-2023-01

The Northwest Tropical Atlantic Station (NTAS):

NTAS-20 Mooring Turnaround Cruise Report Cruise on Board RV Pisces November 4-28, 2021 Newport, RI - Pascagoula, MS

by

Sebastien Bigorre, Ray Graham

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

November 2021

Technical Report

Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA19OAR4320074.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as Woods Hole Oceanographic Institution Technical Report, WHOI-2023-01.

Approved for public release; distribution unlimited.

Approved for Distribution:

formantum

Young-Oh Kwon, Chair Department of Physical Oceanography

Abstract

The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air-sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations are used to investigate air-sea interaction processes related to climate variability. The NTAS Ocean Reference Station (ORS NTAS) is supported by the National Oceanic and Atmospheric Administration's (NOAA) Global Ocean Monitoring and Observing (GOMO) Program (formerly Ocean Observing and Monitoring Division).

This report documents recovery of the NTAS-19 mooring and deployment of the NTAS-20 mooring at the same site. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity.

The mooring turnaround was done by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI), onboard R/V *Pisces*, Cruise PC-21-07. The cruise took place from November 4 to 28, 2021. The NTAS-20 mooring was deployed on November 12, and the NTAS-19 mooring was recovered on November 13. Limited inter-comparison between ship and buoys were performed on this cruise. This report describes these operations and the pre-cruise buoy preparations.

Other operations during PC-21-07 consisted of one CTD cast near the Meridional Overturning Variability Experiment (MOVE) subsurface mooring array MOVE 1-14. MOVE is designed to monitor the integrated deep meridional flow in the tropical North Atlantic.

Table of Contents

I. INTRODUCTION	7
I. A. TIMELINE	7
I. B. BACKGROUND AND PURPOSE	
II. CRUISE PREPARATIONS	
II. A. STAGING AND LOADING	
II.C. SENSOR EVALUATION AND BURN-IN	
III. NTAS 20 DEPLOYMENT	
A. MOORING DESIGN	
B. DEPLOYMENT	
C. ANCHOR SURVEY	23
IV. NTAS 19 RECOVERY	
A. MOORING RECOVERY	25
B. INSTRUMENT PERFORMANCE	
C. NTAS 20 AND NTAS 19 INTER-COMPARISONS	
V. ANCILLARY WORK	
A. CTDs	
References	53
ACKNOWLEDGEMENTS	53
APPENDIX 1: NTAS 19 MOORING LOG	
APPENDIX 2: NTAS 20 MOORING LOG	60
APPENDIX 3: NTAS 20 INSTRUMENT SETUP	

List of Tables

TABLE III-1. ACOUSTIC RANGES FOR NTAS 20 ANCHOR SURVEY.	23
TABLE III-2. NTAS 20 ANCHOR COORDINATES BASED ON ACOUSTIC SURVEY	23
TABLE V-1. CTD CASTS DURING PC 21-07 CRUISE.	50

List of Figures

FIGURE I-1. NTAS 20 CRUISE TRACK ONBOARD FSV PISCES (CRUISE PC21-07)	10
FIGURE II-1. NTAS 20 SURFACE BUOY AND MOORING EQUIPMENT STAGED ON PIER 17 AT THE	
NEWPORT NAVAL STATION IN NEWPORT, RI.	. 12
FIGURE III-1. TOP VIEW SCHEMATIC OF THE METEOROLOGICAL TOWER ON THE NTAS 20 BUOY	
WITH THE LOCATION OF THE ASIMET AND OTHER INSTRUMENTS.	. 15
FIGURE III-2. NTAS 20 MOORING DIAGRAM	. 16
FIGURE III-3. NTAS 20 BUOY AND METEOROLOGICAL INSTRUMENTATION ON DEPLOYMENT DAY	.17
FIGURE III-4. SUBSURFACE TELEMETRY SYSTEM BEING DEPLOYED OVER THE PORT SIDE OF THE	
NOAA F/V <i>Pisces</i>	. 18
FIGURE III-5. PREPARING THE NTAS 20 SURFACE BUOY FOR DEPLOYMENT WITH EM CHAIN	
DEPLOYED OVER THE PORT SIDE	. 19
FIGURE III-6. NTAS 20 SURFACE BUOY DEPLOYMENT OVER THE PORT SIDE OF THE NOAA F/V	
Pisces	20
FIGURE III-7. NTAS 20 SURFACE BUOY JUST AFTER RELEASE WITH TOP SECTION OF MOORING WI	RE
SET-UP ON DECK	. 20
FIGURE III-8. NTAS 20 SURFACE MOORING ANCHOR JUST BEFORE RELEASE	. 22
FIGURE III-9. NTAS 20 ANCHOR SURVEY: SCREEN CAPTURE OF NEWHALL'S MATLAB CODE	
(SURVEY.M) RESULTS	. 24
FIGURE IV-1. CLUSTER OF GLASS BALL FLOATS OFF THE STARBOARD BOW OF THE NOAA F/V $$	
Pisces.	. 25
FIGURE IV-2. RECOVERY OF THE NTAS 19 DUAL ACOUSTIC RELEASES WITH CLUSTER OF GLASS	
BALL FLOATS ON DECK	. 26
FIGURE IV-3. NTAS 19 SURFACE MOORING ON DECK AFTER RECOVERY	. 27
FIGURE IV-4. NTAS 19 JUST BEFORE RECOVERY ON NOVEMBER 13,2021 2	298
FIGURE IV-5. ASIMET METEOROLOGICAL SENSORS IMMEDIATELY PRIOR TO RECOVERY OF	
NTAS19	. 29
FIGURE IV-6. NTAS 19 BUOY BRIDLE IMMEDIATELY FOLLOWING RECOVERY	30
$FIGURE\ IV-7.\ NTAS\ 19\ subsurface\ instrumentation\ at\ recovery:\ deeper\ instruments.$	31
$FIGURE\ IV-8.\ NTAS\ 19\ subsurface\ instrumentation\ at\ recovery:\ middle\ instruments.$	32
FIGURE IV-9. NTAS 19 SUBSURFACE INSTRUMENTATION AT RECOVERY: SHALLOWER	
INSTRUMENTS	33
FIGURE IV-10. NTAS19: NORTEK CURRENT METERS AND PROFILERS	34
FIGURE IV-11. NTAS19 RECOVERY: FISHING GEAR.	35
FIGURE IV-12. LOGGER 5 DATA FROM NTAS 19: WIND U (M/S), WIND V (M/S), SST (°C), SURFAG	CE
SALINITY (PSU), PRECIPITATION (MM)	36
FIGURE IV-13. LOGGER 3 DATA FROM NTAS 19: WIND U (M/S), WIND V (M/S), SST (°C), SURFAG	CE
SALINITY (PSU), PRECIPITATION (MM)	37

FIGURE IV-14. LOGGER 5 DATA FROM NTAS 19: AIR TEMPERATURE (°C), RELATIVE HUMIDITY
(%RH), BAROMETRIC PRESSURE (MBAR), LONGWAVE RADIATION (W/M ²), SHORTWAVE
RADIATION (W/M^2)
FIGURE IV-15. LOGGER 3 DATA FROM NTAS 19: AIR TEMPERATURE (°C), RELATIVE HUMIDITY
(%RH), BAROMETRIC PRESSURE (MBAR), LONGWAVE RADIATION (W/M ²), SHORTWAVE
RADIATION (W/M^2)
FIGURE IV-16. NTAS 19 AQUADOPPS AT 5.7 M AND 13 M DEPTHS: SIGNAL AMPLITUDE DURING ALL
DEPLOYMENT
FIGURE IV-17. NTAS 19 SEABIRD SBE37S TEMPERATURE RECORD, WITH ADDED OFFSET FOR
READABILITY
FIGURE IV-18. NTAS 19 SEABIRD SBE37s SALINITY RECORD, WITH ADDED OFFSET FOR
READABILITY
FIGURE IV-19. NTAS 19 SEABIRD SBE39S TEMPERATURE RECORD, WITH ADDED OFFSET FOR
READABILITY
FIGURE IV-20. NTAS 19 SEABIRD SBE56s TEMPERATURE RECORD
FIGURE IV-21. TIMESERIES OF HOURLY AVERAGES OF NEAR SURFACE METEOROLOGY FROM NTAS
20 (transmitted through Iridium from ASIMET system1/logger5 and system
2/logger 3 in black, red lines and system4/Campbell in green line) and NTAS 19 (
BASED ON RECOVERED 1-MN DATA IN BLUE, MAGENTA LINES), WHILE BOTH PLATFORMS WERE
IN THE WATER FROM NOVEMBER 12-13 2021. FROM TOP: AIR TEMPERATURE IN $^{\circ}$ C, AIR
RELATIVE HUMIDITY IN $\% RH$, BAROMETRIC PRESSURE IN MBARS, DOWNWELLING LONGWAVE
AND SHORTWAVE RADIATION IN W M ⁻² . BLACK VERTICAL DOTTED LINE REPRESENT TIME OF
NTAS 20 ANCHOR DROP (LEFT) AND TIME OF NTAS 19 MOORING RELEASE
FIGURE IV-22. SAME AS FIGURE IV-21 BUT FOR EASTWARD WIND IN M S ⁻¹ , NORTHWARD WIND IN M
$ m s^{-1}$, sea surface temperature in $ m ^{\circ}C$, sea surface conductivity in $ m S~m^{-1}$, and
PRECIPITATION ACCUMULATION IN MM (BOTTOM)
FIGURE IV-23. SCATTER-PLOTS OF MEASUREMENTS IN FIGURE IV-21AND FIGURE IV-22.
COLLECTED BETWEEN NOVEMBER 12-13 2021. FROM TOP TO BOTTOM, LEFT TO RIGHT: AIR
TEMPERATURE IN °C (TOP), DOWNWELLING SHORTWAVE RADIATION IN W M ⁻² AIR RELATIVE
HUMIDITY IN $\%$ RH (CENTER) AND DOWNWELLING LONGWAVE RADIATION IN W M ⁻²
FIGURE IV-24. SIMILAR TO FIGURE IV-23. FROM TOP TO BOTTOM, LEFT TO RIGHT: PRECIPITATION
ACCUMULATION IN MM , SEA SURFACE TEMPERATURE IN $^{\circ}\mathrm{C},$ BAROMETRIC PRESSURE IN
MBARS, SEA SURFACE CONDUCTIVITY IN S M^{-1}
FIGURE IV-25. SIMILAR TO FIGURE IV-23. FROM TOP TO BOTTOM, LEFT TO RIGHT: WIND SPEED IN
M S ⁻¹ , WIND SPEED TO THE EAST IN M S ⁻¹ , WIND HEADING IN DEGREES AND WIND SPEED TO THE
NORTH M S ⁻¹
FIGURE V-1. SHIP TRACK (RED), LOCATIONS OF CTD CASTS (BLACK CROSSES) DURING NTAS 20
CRUISE PC-21-07, AND ANCHORS POSITIONS FOR NTAS 19 AND 20 MOORINGS (BLUE CROSSED
CIRCLES)
FIGURE V-2. PROFILES FROM CTD CAST#2 (TOP) AND CAST#4 (BOTTOM)

I. INTRODUCTION

I. A. Timeline

The NTAS 20 cruise departed from Newport, Rhode Island on Thursday November 4, 2021 and returned to Pascagoula, Mississippi on November 26, 2021. The NTAS 20 mooring was deployed on November 12, 2021, inter-comparison at NTAS 19 was done the previous day on November 11 and the NTAS 19 mooring was recovered the next day on November 13. The ship docked in Pascagoula on November 26, 2021, at 10:00 UTC-4, and offloading of NTAS equipment proceeded.

A detailed chronology of the cruise is provided below. Local time on the ship during PC-21-07 cruise was EST (UTC-4).

October 22, Friday: Loading of equipment on two trucks at WHOI: one flatbed truck with buoy foam and anchors, and one trailer truck with buoy well, halo and remaining equipment. At 2 pm, WHOI personnel (Graham, Keane, Bigorre) arrive at Navy base in Newport, RI, get entrance passes, and start offloading trucks on pier 2, using NOAA forklift truck. Buoy assembled in early evening. Bigorre return to MA at end of day.

October 23, Saturday: Buoy spin on the pier (Ray notices errors in wind compasses, probably due to disturbance from reinforced concrete) followed by data download. Brizo wave sensor installed and running. Buoy brackets, bird wire, front crash bar installed, decals and water marks applied on buoy foam. Drew Cole arrives in RI, starts isolation at same hotel as ship's crew.

October 24, Sunday: Replaced SST cable on ASIMET Logger 16 with spare cable and SST data now coming through (new spare cable will be brought from WHOI for the cruise). WAMDAS powered on and spun at 45 degrees intervals for 10 minutes each. Measured heights, mounted bird spikes (PRCs, WXT, radiometers, front crash bar for winds), dressed tower and well cables and started the SS telemetry system with 1 Microcat on the jumper wire. Secured buoy and equipment for hurricane forecast. Graham and Keane return to MA next day.

October 26 – November 1: WHOI team in isolation. PCR testing in RI on October 30. Ship crew loads non-sensitive equipment (steel beams, glass balls, wood line wire baskets, deck boxes) onboard.

November 2, Tuesday: Science party receives rapid test for Covid on dock, then boards. Load ship using NOAA forklift and ship's starboard crane. 15:30 EST, buoy loaded on port side and tilted. Issues with adapter plates for securing H-bit and capstan on deck: spacing between plates holes is 1/16" short and spacing between Baxter plug holes on deck is not uniform.

November 3, Wednesday: Chief engineer widen adapter plates holes using torch. 10:00 orientation meeting. 11:00 abandon ship drill. Connect lab to GPS antennae on 01 deck starboard side. Data dump from 2 ASIMET systems and Campbell system (not WXT due to difficult access caused by

Brizo). Check WXT in test mode. Data ok, except SST on Logger 12 (flat for half day on 11/2 and for shorter duration on 8/28–29). Replace with spare SST.

November 4, Thursday: 0800 gangway removed and stored on 01 deck, along with other equipment including capstan. 09:54 EST ship departs. Afternoon: rewind wire on starboard net drum, on top of some ship's rope and a tarp that act as padding on sharp edges from separating disk in the middle of the drum.

November 5, Friday: transit SE, 11-13 kts to avoid storm on US east coast. 13:00 safety meeting.

November 6, Saturday: 9:20 EST one Microcat installed on inductive line inside bucket, data looks good. Review telemetry data on inductive line from October 12–20 test at WHOI: data is good and no need to retest on deck (same configuration). Splices nylon rope.

November 7, Sunday: Spike subsurface instruments. Splice Colmega and Nylon.

November 8, Monday: Air test three acoustic releases in morning. 10:00 meeting with bridge and bosun regarding deployment. 13:12 CTD#1 with 3 acoustic releases on Rosette (24° 38.488' N, 059° 21.557' W).

November 9–10: mount universal section to buoy, EM chain, SSTs. Clear and format instruments cards.

November 11, Thursday: Mock run for deployment. 07:30 EST arrive at NTAS20 target, wind 15 kts, 070° true, current 1 kt to 132°. 07:45 set and drift. 08:40 start mock run, course 075°. 08:00 XBT launched, new sound velocity profile updates bathymetry reading at target (7 m reduction), new depth is 5044 m. 11:00 mock run satisfactory (kept constant course 075° at 1 kt) and allowed for a couple of test maneuvers. After mock run, check bathymetry in zone beyond target. 11:45 departs to NTAS19. 12:50-13:10 CTD#2 to 250 m (14° 48.35' N, 051° 02.07' W) near NTAS19 buoy. Bullwarks removed on port side to prepare for deployment. 14:15 ship repositions near NTAS19 buoy for drive by: propellers on one wind anemometer are gone, and do not move on the other wind sensor. 18:00 (UTC-4) CTD#3 to 250 m (14° 48.69' N, 051° 02.09' W) near NTAS19 buoy, intercomparison at NTAS19 buoy starts.

November 12, Friday: 04:30 (UTC-4) departs NTAS19 towards NTAS20 deployment site. 05:30 (UTC-4) set and drift test at target site (14° 45' N, 050° 56' W); drift to the west at less than 1 kt. Wind from ENE (070° and 10 kts), small current from ESE. Start track 6.5 nm from target. 07:30 (UTC-4) safety brief on deck, install IM sensors on mooring line up to 55 m mark. 08:30 (UTC-4) buoy in the water. Nortek ADCP intended for deployment at 24 m is inadvertently overlooked, so line is brought back, and it is deployed instead at 54 m. 10:10 (UTC-4) last instrument deployed. 13:00 (UTC-4) start deploying glass balls. 14:20 (UTC-4) bathymetry is confirmed satisfactory for deployment. 14:57 (UTC-4) anchor drop at (14° 44.958' N, 050° 56.170' W), water depth is 5044 m. 16:50 – 18:50 (UTC-4) anchor survey. 18:00 (UTC-4) CTD#4 to 250 m (14° 44.34' N, 050° 57.73' W, 250 m downwind of NTAS20 buoy) at same site as anchor survey point #2. Ship heaves to overnight 600 yards downwind of NTAS20 buoy for inter-comparison. Bridge is

concerned about distance from shore with increasing weather to the north and some suspicious noise from a backup engine and prefers to advance return to Pascagoula to tomorrow.

November 13, Saturday: 08:00 (UTC-4) CTD#5 to 250 m (14° 43.73' N, 050° 57.62' W, 250 m downwind of NTAS20 buoy). 08:30 safety meeting for mooring recovery. 09:00 drive by NTAS20 buoy for pictures and waterline. 10:22 (UTC-4) release NTAS19 mooring, ship is 0.5 nm west of anchor, buoy is southwest of anchor. Wind 15 kts, 080° true. Ping on releases to check ascent. 11:15 (UTC-4) glass balls at surface 500 yards ahead of ship. 11:45 ship power shuts down as we are about to grab onto glass balls, mooring line drifts under the ship. Power shuts down again on next approach but this time, line is entangled under the hull. Once line is secured on two points (one towards the buoy, one towards the glass balls) on starboard rail, the part that is entangled is cut off. Ship used one big and one small engine and should use two big engines for future recovery maneuvers. After NTAS19 recovery ends and deck secured, ship departs towards MOVE1. 22:30 (UTC-4) CTD#6 to 2,300 m, (15° 26.36' N, 051° 32.25' W), 1.8 nm from MOVE1-14 mooring. After CTD, start return transit to Pascagoula.

November 14, Sunday: 07:00 (UTC-4) CTD#7 to 250 m at (15° 22' N, 052° 39' W). 13:00 (UTC-4) CTD#8 to 250 m at (15° 20.275' N, 053° 38.148' W). 19:00 (UTC-4) CTD#9 to 250 m at (15° 19' N, 054° 38.01' W). Clean up subsurface instruments. Data download

November 15, Monday: 01:00 (UTC-4) CTD#10 at (15° 15' N, 055° 38' W) aborted due to problem with CTD electronics. 07:00 (UTC-4) CTD#10 to 250 m at (15° 13.81' N, 056° 35.8' W), problem with electronics occurs again and survey technician fixes problem by drying connecting pins.

November 16, Tuesday: subsurface data downloaded. Safety meeting at 12:30. 14:00 buoy tipped upright. Offspooled wire from net drum onto wooden reels. Remove ASIMET instruments from buoy.

November 17, Wednesday: surface data downloaded, except Lascar (battery depleted). Offspooled rope from net drum into bags.

November 18, Thursday: Pack instruments and lab equipment into baskets. Drills at 12:30. Melo battery depleted, but data downloaded by applying external power.

November 19, Friday: lunar eclipse around 04:00 (UTC-4). Convert and pre-process data files to Matlab. Some SBE39 data files seem short and are later redownloaded completely. Compare NTAS19 subsurface data to CTDs 2,3.

November 20–25: transit to Pascagoula continues. Review meeting between science team, bridge, deck, and engineering crew on 11/23.

November 26, Friday: 10:00 ship docks at Halter shipyard in Pascagoula. Offload NTAS equipment, and load onto two trucks (one semi, one low-boy flatbed). NTAS20 cruise ends.

Figure I-1. NTAS 20 cruise track onboard FSV Pisces (cruise PC21-07).

I. B. Background and Purpose

The Northwest Tropical Atlantic Station (NTAS) project for air-sea flux measurement was conceived in order to investigate surface forcing and oceanographic response in a region of the tropical Atlantic with strong sea surface temperature (SST) anomalies and the likelihood of significant local air-sea interaction on inter-annual to decadal timescales. Two intrinsic modes of variability have been identified in the ocean-atmosphere system of the tropical Atlantic, a dynamic mode similar to the Pacific El Niño-Southern Oscillation (ENSO) and a thermodynamic mode characterized by changes in the cross-equatorial SST gradient. Forcing is presumed to be due to at least three factors: synoptic atmospheric variability, remote forcing from Pacific ENSO, and extra-tropical forcing from the North Atlantic Oscillation (NAO). Links among tropical SST

variability, the NAO, and the meridional overturning circulation, as well as links between the two tropical modes, have been proposed. At present neither the forcing mechanisms nor links between modes of variability are well understood.

The primary scientific objectives of the NTAS project are to determine the in-situ fluxes of heat, moisture, and momentum, to use these fluxes to make a regional assessment of flux components from numerical weather prediction models and satellites, and to determine the degree to which the oceanic budgets of heat and momentum are locally balanced. To accomplish these objectives, a surface mooring with sensors suitable for the determination of air–sea fluxes and upper ocean properties is being maintained at a site near 15° N, 51° W by means of annual "turnarounds" (recovery of one mooring and deployment of a new mooring near the same site).

The surface elements of the moorings are Surlyn foam discus buoys outfitted with two complete Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture, and momentum. The upper 160 m of the mooring line is outfitted with oceanographic sensors for the measurement of temperature, salinity, and velocity. The upper 80 m also contain inductive instruments that transmit their data to a logger inside the surface buoy; this data is then telemetered to a satellite.

The NTAS 20 mooring turnaround was achieved on the research vessel FSV *Pisces*, cruise PC 21-07, by the Upper Ocean Processes Group (UOP) of the Woods Hole Oceanographic Institution (WHOI).

The cruise was completed in 23 days, during November 4–26, 2021. It originated from Newport RI, and returned to Pascagoula, MS. The cruise track is shown in Figure I-1. The NTAS primary objectives were:

- To deploy the NTAS-20 mooring.
- To log data from the NTAS-20 buoy and *FSV Pisces* shipboard meteorological sensors during an inter-comparison period during which a sequence of CTD casts would also be made.
- To recover the NTAS-19 mooring.
- To do an inter-comparison between the NTAS-19 buoy and *FSV Pisces* shipboard data (meteorological sensors and CTD cast).

II. Cruise Preparations

II. A. Staging and Loading

The buoy systems were tested at WHOI during burn-in before being shipped to Rhode Island. On October 22, 2021, the NTAS 20 buoy and all supporting gear was loaded onto 2 trucks, a 48 ft low-boy flatbed and a 53 ft box truck. The gear was loaded at WHOI in Woods Hole, MA, in the morning and offloaded at Pier 17 at the Newport Naval Station in Newport, RI, by 3 WHOI personnel (Graham, Bigorre, Keane) later that same day. Once offloaded, the buoy well, midsection and tower were reconstructed, and the primary meteorological systems were turned on. Over the next several days, in-port cruise preparations continued including: mounting all accessory brackets on the buoy, buoy spin, surface instrumentation, data evaluation, and testing of the subsurface telemetry system. On October 24, in-port cruise preparations were complete, and the buoy was left to run on the pier while WHOI personnel were in quarantine. Quarantine for WHOI personnel was from 10/25-11/2, with a PCR Covid test in West Greenwich, RI on 10/30. WHOI personnel joined the Pisces at pier 17 on November 2 and prior to loading operations were required to pass a rapid PCR Covid test on the pier. Once all personnel were confirmed negative, loading operations began. All equipment was loaded by the end of the day on 11/3 and equipment was either stored in the lab or set up on deck and secured for transit. Custom butterfly plates were used to mount the air-tugger and H-bit and custom bars for standard deck cleats. The Pisces deck pattern was found to be inconsistent such that the holes on the butterfly plates did not line up with the deck pattern. An acetylene torch was used by one of the ships engineers to further slot the butterfly plate holes. With all equipment secured, the ship departed Newport, RI on Thursday, November 4 at 10:00 EST, starting cruise PC-2107

Figure II-1. NTAS 20 surface buoy and mooring equipment staged on Pier 17 at the Newport Naval Station in Newport, RI.

II.C. Sensor Evaluation and Burn-in

The NTAS meteorological instrumentation consists of two Air-Sea Interaction Meteorology (ASIMET) primary systems, which are connected to loggers and battery packs in the buoy well, and standalone instrumentation, which are not connected to loggers and have independent batteries. For burn-in, the buoy was mounted with ASIMET and standalone sensors in the same configuration as the one planned for deployment and placed for almost two months in a clear outdoor area at WHOI. Systems were running, collecting data and telemetry transmitted hourly data. Spare instruments were also mounted on a similar buoy next to NTAS 20. Every two week or so, the data was downloaded and processed to ensure all instruments were functioning properly and that their measurements were accurate. Burn-in occurred in summer 2021, and a short burn-in was done in port in Bridgetown and again onboard *FSV Pisces* during the transit between Rhode Island and the NTAS site.

III. NTAS 20 Deployment

A. Mooring Design

The buoys used in the NTAS project are equipped with surface meteorological instrumentation, including two ASIMET systems and standalone sensors (Vaisala WXT, SBE39 temperature, Lascar RH/ATMP), see Figure III-1. The ASIMET sensors include air temperature and humidity (ATMP/HRH), barometric pressure (BPR), wind speed and direction (WSPD and WDIR), precipitation (PRC), longwave (LWR) and shortwave (SWR) radiations, and seas surface temperature (SST) and salinity (SSS). Since NTAS 18, an additional data collection system was also implemented which included some of the same measurements (precipitation, air humidity and temperature, barometric pressure, longwave and shortwave radiations, and a GPS) that were recorded to a Campbell data logger. NTAS 20 also included two wave measurement systems, a WAMDAS system provided by NDBC, which recorded data internally, and a Brizo system from the XEOS company which recorded internally and telemetered data as well. Positions of the buoy were recorded by several two Rover and one Melo sensors from XEOS. The NTAS surface buoys have a 2.7-meter diameter foam buoy with an aluminum tower and rigid bridle. Starting with NTAS 13, buoys on NTAS received a larger wind vane to improve the alignment into the wind. On NTAS 13, NTAS 15 and subsequent deployment (including NTAS 20), the original metal wind vane (used up to NTAS 12) received a Delrin extension. This made for a lightweight addition and easier maneuverability of the buoy on deck. The wind vane on NTAS 14 was made of a single metal piece and larger than the original wind vanes.

The WHOI mooring is an inverse catenary design utilizing wire rope, chain, nylon and Colmega line. The mooring line also carries subsurface instrumentation down to 160 m that measures temperature and conductivity, two acoustic current meters and two profilers, and two deep SBE 37s near the bottom (Figure III-2). Several instruments transmit their data through the upper 80 m of inductive (IM) wire. The upper 5 m of the mooring includes a compliance section (also called EM chain) through which inductive sensors transmit their data to an Iridium logger in the buoy well.

Figure III-1. Top view schematic of the meteorological tower on the NTAS 20 buoy with the location of the ASIMET and other instruments.

Figure III-2. NTAS 20 mooring diagram.

Figure III-3. NTAS 20 buoy and meteorological instrumentation on deployment day.

B. Deployment

The deployment of NTAS 20 surface mooring occurred on November 12, 2021. Preparation for the deployment began at approximately 0530 (UTC-4) with the *Pisces* conducting a set and drift test at the target site. The ship drifted to the west at less than 1 kt. Wind was from ENE (070° and 10 kts), and there was a small current from ESE. Thus, it was determined that the *Pisces* would set up 6.5 nm, down-wind from the anchor drop site.

On deck, preparation for deployment involved mounting the upper 79 m section of 7/16" mooring wire to the subsurface telemetry interface section. In the days prior to deployment, the universal joint, flanged spacers, compliant section and coupling assembly were mounted to the buoy. On the morning of deployment, the 79 m section of mooring wire was led through a travelling block, around the port quarter and forward to the wire coupling assembly. A SeaBird 39 and Nortek current meter were clamped to the compliant section and all other instruments down to 55m were clamped to the mooring wire as well. Once the instruments were connected, a large loop of mooring wire with instruments was lowered along the port side and secured in the port corner with a slip line. Deployment operations began at approximately 0800 (UTC-4) with the ship's knuckle (Appleton) crane lowering the assembled telemetry interface section over the port side of the ship. The crane was connected to the outboard portion of the bottom coupling assembly using a 6' sling and a Peck and Hale release. Once connected the crane lifted the assembly and moved outboard until the full telemetry interface section was leading off the port side of the ship, at that time the crane lowered the bottom coupling assembly to the water and the release was triggered.

Figure III-4. Subsurface telemetry system being deployed over the port side of the NOAA F/V Pisces.

Figure III-5. Preparing the NTAS 20 surface buoy for deployment with EM chain deployed over the port side.

The next phase of the operation was to deploy the surface buoy. Slip lines were rigged on the buoy base, tower D-handle, and mid-section D-handle to maintain control during the buoy deployment. There were two tag-lines rigged to the buoy base, one leading to the H-bit that would be cleared first because of the distance between the H-bit and the buoy once outboard of the ship, and a second leading to a cleat on the port rail to be cleared last. Two parallel 12' slings were used to connect the ship's starboard crane to the Peck and Hale release. The release was then connected to the buoy using a 6' sling basketed through the pick-up bale. This was rigged in order to raise the crane's headache ball above the buoy tower to help avoid a collision with the instrumentation on the tower top during deployment. Once connected, the ship was instructed to increase speed from 0 kn to between 0.5-0.75 kn through the water. Once the bridge confirmed 0.5 to 0.75 kn through the water, the last two straps lashing the buoy to the deck were removed. The buoy was raised slightly off the deck and swung outboard at approximately 45°, with the tower leading slightly outboard. The slip lines were cleared in the following order: buoy base to H-bit, mid-section D-handle, tower-top and buoy base to port rail, with the final two cleared as the buoy reached the water. Once the buoy settled into the water, approximately 15 ft from the side of the ship, the quick-release was triggered and pulled away from the buoy at 08:30 (UTC-4). With the ship already moving slowly ahead, the approximately 50 m of mooring wire with instrumentation was lead over the rail until the buoy was clear of the stern and wire was paying out straight aft. The remainder of the 79 m section of wire was payed out the stern stopping to put instrumentation on along the way.

Figure III-6. NTAS 20 Surface buoy deployment over the port side of the NOAA F/V Pisces

Figure III-7. NTAS 20 surface buoy just after release with top section of mooring wire set-up on deck.

Once at the bottom of the 79 m section of mooring wire, two stopper lines were connected to the end link on the leading end of the mooring wire and the wire termination was disconnected. The stopper lines were run through the travelling block with the wire to keep a good wire angle and prevent chaffing on the deck. The RDI ADCP cage was then shackled into the mooring between the two wire sections. With the wire from the ship's split net drum winch connected to the bottom of the ADCP cage, tension was taken back onto the winch and stopper lines were removed. Wire continued being payed out the stern with instruments being clamped on periodically. At approximately 100 m it was noted that an instrument (Nortek ADCP) set to be deployed at 24m had been missed. At that time the mooring was hauled back in, removing instruments, stopping off and removing the ADCP cage and the instrument was mounted at 54 m due to concerns of pulling the buoy in too far and risking flipping it over. The same method described previously for

deploying the rest of the 79 m section and ADCP cage termination were used going back out. At 10:10 (UTC-4), all instrumentation was deployed, at 160 m depth, and the ship was instructed to increase speed to 1 kn and again instructed at the end of the first 500 m wire section to increase speed to 1.25 kn. The remaining 700 m of mooring wire was deployed at this speed while monitoring winch pay-out speed to ensure proper tension throughout deployment.

The final section of mooring line on the port winch was the wire to nylon transition. This consists of a 100-meter shot of 3/8" mooring wire and 200 meters of 7/8" Nylon line. The termination is encapsulated in urethane providing a transition from the stiff mooring wire to the flexible nylon line. As the end of the nylon came off the winch, it was payed out slowly until the thimble was 10 feet from the transom at which point it was shackled into a thimble on the 7/8" nylon off the H-bit.

The H-bit cleat was positioned approximately 20 feet from the transom and secured to the deck using custom butterfly plates to match the ships 47–48" x 47–48" center on center, deck pattern. The free end of the 4100 m section of nylon and Colmega line, stowed in three wood-lined wire baskets, was wrapped onto the H-bit and passed to the hard eye at the end of the 200-meter section from the wire to nylon termination. The two nylon sections were shackled together and wrapped with canvas to provide rigidity and protection for the nylon from the shackles. The line handler took tension onto the H-bit to allow for slow but smooth deployment of the line. With moderate back tension, the H-bit line handler and one assistant eased the mooring line out of wooden boxes with another person spraying water on the H-bit to keep the line from overheating. A large stopper line was attached to the hard thimble at the end of the Colmega to assist with load transfers at the end of the line.

The hard thimble at the end of the Colmega line was slowly payed out through the H-bit using the stopper line until the thimble was approximately 10 ft from the end of the transom. At that point the stopper line was secured around the H-bit and the glass floats were dragged into position. At 13:00 (UTC-4), the first set of glass floats were shackled to the thimble on the end of the Colmega line and connected to the winch leader on the other end. Once connected the winch took up tension as the stopper line was slipped out of the H-bit and cleared. After the line was cleared, the winch payed out until only one ball remained on the deck. Stopper lines were then attached, the winch leader was removed, and two more strings of glass floats were inserted into the mooring line, with the end of the second string connected back to the winch leader. This process was repeated until all 56 floats were deployed.

A 1" titanium load bar with two SBE 37 was shackled to the last glass float segment. After that, a 5 m section of $\frac{1}{2}$ " chain was connected to the mooring on one end and the ship's winch on the other. The winch took up tension, stopper lines were removed, and a chain hook connected to the outhaul winch on the A-frame lifted the SBE 37s off the deck. The winch payed out, and the instruments were eased over the transom. The outhaul went slack, and the chain hook was removed. During this time the dual acoustic releases were rigged with the release chain and master link. The master link was then connected to a 5 m section of $\frac{1}{2}$ " trawler chain, followed by a 20 m section of 1" Samson Nystron line. The Nystron line was then wound onto the winch and the dual acoustic releases were shackled to the 5 m section of chain. The anchor was then moved into position ~10 ft from the transom on center using the ship's crane and a 5 m section of $\frac{1}{2}$ " trawler

chain was shackled to the anchor. The Nystron line was payed out until the connection could be made between the Nystron and the 5 m anchor chain. At this time, a large slip line was doubled back through the hard eye on the end of the Nystron and used to transfer the load to the anchor.

At 14:20 (UTC-4), the bathymetry was confirmed satisfactory for deployment and preparations for anchor drop started. The ship's Gilson winch with 1" spectra was fed through a block on the A-frame and connected to the anchor using the Peck and Hale release rigged with a 12-foot sling basketed through the anchor eye bolt. Two slip lines were rigged through the eye on the anchor to assist in stability during the deployment. The final step required the A-frame and Gilson winch operator to work together to lift and lead the anchor over the stern. Once clear of the stern, the Gilson winch lowered the anchor to the water and lines were cleared. At 14:57 (UTC-4) on November 12, 2021, the anchor was released at 14°44.958 N, 050°56.170 W in water depth of 5044 m.

Figure III-8. NTAS 20 surface mooring anchor just before release

Following the deployment, the ship positioned away from moving buoy and set in position for anchor survey, which occurred from 16:50 to 18:50 (UTC-4). At 18:00 (UTC-4), CTD#4 to 250 m (14° 44.34' N, 050° 57.73' W, 250 m downwind of NTAS 20 buoy) at same site as anchor survey point #2. After anchor survey, FSV *Pisces* remained 600 yards downwind of NTAS 20 buoy for inter-comparison overnight. At 08:00 (UTC-4) the next morning, November 13 2021, CTD#5 to 250 m was cast 250 m downwind of NTAS 20 buoy. At 09:00 (UTC-4), the ship slowly drove by NTAS 20 buoy. Visual observations showed the no damage to the tower top instrumentation during deployment and the buoy riding smoothly with a nominal waterline about 70 cm below the buoy deck.

C. Anchor Survey

NTAS 20 anchor was dropped at 14:57 (UTC-4) on November 12, 2021, at 14° 44.958' N, 050° 56.170' W (measured on fantail using handheld GPS) in water depth of 5044 m. The acoustic survey of the anchor position was carried out the same day. The three triangulating positions were occupied in a triangular pattern (see Table III-1) around the drop site. WHOI's Edgetech 8011M deck gear was used with the portable transducer lowered (about 5 m below the waterline) over the starboard side by the CTD launch in order to range on one of the mooring releases. The releases are about 38 meters above the anchor, which rests on the seafloor. The ship's Multibeam measured the water depth in the area of the anchor drop as 5044 m, using local speed of sound from an XBT profile. Triangulation using the horizontal range to the release from the three sites, gave an anchor position of 14° 44.897' N, 050° 56.332' W (in decimal convention 14.7483° N, 50.9389° W). Fallback from the drop site was 290 m or 5.7 % of the water depth (Table III-2).

Waypoint	Latitude (dd mm.mmm N)	Longitude (dd mm.mmm W)	Travel time (s)
1	14 45.456	50 54.810	7.656
2	14 44.490	50 57.873	7.620
3	14 43.483	50 56.048	7.501

Fable III-1. Acoustic ran	ges for NTAS	5 20 anchor survey.
----------------------------------	--------------	---------------------

Table III-2. NTAS 20 anchor coordinates based on acoustic survey.

Anchor Drop	14 44.958 N	50 56.170 W
Anchor position,	14 44.897 N	50 56.332 W
Newhall's code		
Depth at anchor position	5044 m	
Fallback	290 m	5.7% water depth

Figure III-9. NTAS 20 anchor survey: screen capture of Newhall's Matlab code (survey.m) results.

IV. NTAS 19 Recovery

A. Mooring Recovery

Recovery of the NTAS 19 mooring occurred on November 13, 2021. At 10:22 (UTC-4) the ship *FSV Pisces* was positioned roughly 0.5 nm downwind of NTAS 19 anchor and 260° from it. Wind was 15 kts, 80° True. NTAS 19 buoy was southwest of its anchor. upwind from the anchor position and the release command was sent to the acoustic release to separate the anchor from the mooring line. At 11:15 (UTC-4), the glass balls surfaced 500 yards and one starboard point on the ship's bow (Figure IV-1).

As the ship approached the glass balls, slowly steaming east, the green Colmega line was spotted floating behind the glass balls and turning back to the southwest towards the buoy, on the far side relative to the ship. Preparations for a starboard recovery of the glass balls were made, which would avoid crossing over the line between the glass balls and surface buoy.

Figure IV-1. Cluster of glass ball floats off the starboard bow of the NOAA F/V Pisces.

In preparation for recovery of the glass balls, the Gilson winch was led through the main block on the A-frame and run around the starboard quarter and up to the side sampling station. Once the glass balls were on the surface, the ship approached slowly and brought the cluster of glass balls along the starboard side of the ship. When the ship was approximately 100 ft off the glass ball cluster, the ship lost all power. With no propulsion the ship drifted over the floating Colmega until the line was fully out from under the ship. At this time, the ship re-gained power and set up for another approach. Once ready, the ship again slowly brought the cluster of glass balls along the starboard quarter. A grapple hook was used to try and bring the cluster closer to the ship. While a successful grapple was connected to the glass ball cluster, the ship again lost all power. The ship then drifted over the floating Colmega line and the line became caught under the ship. As the ship

drifted, the line under the ship formed a U-shape around the prop or rudder, so that both ends of the line, one leading to the surface buoy and the other end to glass balls, were coming out from the starboard side. In order to free the line from the ship, two grapples were used to first pull up the line leading to the surface buoy. Once enough slack was pulled up, the Colmega was secured to a cleat using a 6 ft green sling and a Yale grip was installed on the Colmega. Once installed a shackle and stopper line were used to secure the surface buoy side of the mooring line while the glass floats were recovered. Next, the same procedure using grapples, slings and Yale grips was used on the glass float side of the Colmega. Once rigged, and both ends of the Colmega line were secure, the Colmega was cut below the buoy side Yale grip, allowing the line to be pulled out from under the ship. Once the line was out from under the ship the Yale grip on the glass float side of the line was connected to the ship's Gilson winch and began hauling in slowly on the glass float. The winch hauled the cluster of glass floats up and over the stern while tag lines attached with snap hooks were used to control the cluster as it was pulled forward and lowered to the deck. Once the majority of the glass floats were on board, two stopper lines were secured to the chain leading to the acoustic releases on the edge of the transom. Next, the Gilson winch was taken off of the main cluster and attached to the chain leading to the releases. Stopper lines were cleared, and the winch hauled up the remaining chain and acoustic releases and lowered them on the deck. The final step before hauling in the remainder of the mooring was to clear the glass floats using the ship's crane to put the broken-down strings into wire baskets.

Figure IV-2. Recovery of the NTAS 19 dual acoustic releases with cluster of glass ball floats on deck.

Once the glass floats were clear, the winch leader from the ship's split net drum winch was lead through a travelling block on the A-frame, around the starboard quarter and up to the Yale grip on the Colmega connected to the rest of the mooring line and surface buoy. Once connected to the split net drum, the Colmega was eased out as the ship came around until the line was leading straight out over the stern. At this time the winch was used to haul in approximately 4000 m of Colmega and Nylon line and 1300 m of 3/8" mooring wire before getting to the heavily

instrumented portion of the mooring wire. As the last 160 m of mooring wire was hauled in by the winch, instruments were removed from the wire, inspected, photographed and recorded on the mooring log. When the 85 m ADCP was pulled over the transom, stopper lines were attached to the termination, and the ADCP was removed from the mooring. The two sections of wire were reconnected using the existing mooring hardware and the recovery of the rest of the mooring wire continued, removing instruments as they came in. Instruments were removed up to 55 m before paying the mooring wire back out to the 79 m termination. A slip line was rigged at the end of the termination, winch leader disconnected, and wire slipped out, setting the buoy adrift.

After the buoy was set adrift, the deck was set up for an A-frame recovery. The Gilson winch was run through the main block on the A-frame and around the starboard quarter to where the buoy would be hooked up. A 5-ton titanium hook was connected to the spectra line from the Gilson winch and three tag lines were pre-staged with snap hooks on the stern; one tag line was fair lead through a small block on a shackle to the deck on center and connected to the small air tugger. Once the deck was set up, the ship brought the buoy down the starboard rail and the titanium hook was connected to the buoy pick up bale using a large pick-up pole. The ship continued to slowly move forward until the buoy was straight out off the stern. At this time the ship slowed down to just maintain our heading into the seas. The Gilson began hauling the buoy in until it was directly behind the stern, under the A-frame. The Gilson winch lifted the buoy out of the water, the buoy spun 180 degrees to port and then the three tag lines were connected, two on the mid-section Dhandles and the one rigged to the air-tugger to the D-handle on the tower top. The three tag line handlers worked together along with the winch and A-frame operators to stabilize the buoy while it was brought on deck. The air-tugger tag line acted to pull the buoy forward as it was lowered onto the deck. Once the buoy was laid forward of the grated deck and the bottom of the EM chain was above the water line, the buoy was secured to the deck using ratchet straps.

Figure IV-3. NTAS 19 surface mooring on deck after recovery

The outhaul winch mounted to the A-frame was rigged with a snap hook and connected to the flanged spacer at the bottom of the EM chain. The outhaul winch then hauled the bottom section of the inductive telemetry assembly until it was clear of the transom, before lowering it to the deck.

Once on board, the bell-mouth was secured with a stopper line, the outhaul winch was disconnected, and a Yale grip was installed at the top of the 79 m section of wire left to recover. The wire from the split net drum was then run through a travelling block and reconnected to the final 79 m section of wire. The travelling block was then lifted the majority of the way up the A-frame using the outhaul winch, so that the wire running through the block could clear the buoy tower as it was hauled in by the split net drum winch. Once rigged, the remaining 79 m of mooring wire were recovered using the split net drum winch, and instruments removed as they came up. The final instrument, marking the end of recovery, was on board at 1640 (UTC-4).

Following recovery, instrumentation was removed from the EM chain, which was then disconnected from the buoy. The buoy was then repositioned and secured inboard for transit. The bulwarks were also reinstalled on the port side.

Figure IV-4. NTAS 19 just before recovery on November 13, 2021.

B. Instrument Performance

The NTAS 19 was deployed on 22 October 2020 and recovered on November 13, 2021, thus remaining on station for 287 days. Visual inspection prior to recovery (Figure IV-5) indicated some damaged meteorological instruments (ATMP/HRH on port side missing ventilation plates, wind anemometer on starboard side missing propellers and vanes, propellers from wind sensor on port side not moving). This damage was caused by hurricane Sam on September 27, 2021. Subsurface instrumentation showed little biofouling (Figure IV-66 to Figure IV-10). Fouling with fishing gear was observed in upper section of the mooring (Figure IV-1), which may have been caused by drifting gear than local fishing activity.

A preliminary list of damaged NTAS 19 instruments, many from hurricane follows. On System 1: Wind (no data starting late October), Air temperature (suspicious data) and humidity, Barometric pressure (data interrupted for several days after hurricane but eventually resumed).

Other instruments damaged by hurricane were System 2 Wind, standalone WXT (no data from any variables after hurricane, and no precipitation for the whole deployment). Air temperature and humidity could not be recovered from Lascar instrument.

Subsurface instruments with suspicious or bad data were SBE37#13413 at 70 m (suspicious data starting early September 2021) and #12247 at 4983 m (bad conductivity starting February 2021, but temperature still good).

Figure IV-5. ASIMET meteorological sensors immediately prior to recovery of NTAS19.

Figure IV-6. NTAS 19 buoy bridle immediately following recovery.

Figure IV-7. NTAS 19 subsurface instrumentation at recovery: deeper instruments.

Figure IV-8. NTAS 19 subsurface instrumentation at recovery: middle instruments.

Figure IV-9. NTAS 19 subsurface instrumentation at recovery: shallower instruments.

Figure IV-10. NTAS19: Nortek current meters and profilers.

Figure IV-11. NTAS19 recovery: fishing gear.

Figure IV-12. Logger 5 data from NTAS 19: wind U (m/s), wind V (m/s), SST (°C), surface salinity (psu), precipitation (mm).

Figure IV-43. Logger 3 data from NTAS 19: wind U (m/s), wind V (m/s), SST (°C), surface salinity (psu), precipitation (mm).

Figure IV-54. Logger 5 data from NTAS 19: Air temperature (°C), relative humidity (%RH), barometric pressure (mbar), Longwave radiation (W/m²), Shortwave radiation (W/m²).

Figure IV-65. Logger 3 data from NTAS 19: Air temperature (°C), relative humidity (%RH), barometric pressure (mbar), Longwave radiation (W/m²), Shortwave radiation (W/m²).

Figure IV-76. NTAS 19 Aquadopps at 5.7 m and 13 m depths: signal amplitude during all deployment.

Figure IV-87. NTAS 19 Seabird SBE37s temperature record. Top: data from upper ocean instruments with added offset for readability. Bottom: two deep instruments near glass balls.

Figure IV-9. NTAS 18 Seabird SBE37s salinity record. Top: data from upper ocean instruments with added offset for readability. Bottom: two deep instruments near glass balls.

Figure IV-109. NTAS 19 Seabird SBE39s temperature record, with added offset for readability.

Figure IV-20. NTAS 19 Seabird SBE56s temperature record.

C. NTAS 20 and NTAS 19 Inter-comparisons

The two buoys NTAS 20 and 19 were both in the water from November 12 12:34 UTC when NTAS 20 buoy was deployed, to November 13 20:25 UTC when NTAS 19 was recovered. The anchor drop for NTAS 20 was on November 12 18:57 UTC, and the mooring release for NTAS 19 was November 13 14:22 UTC. The time window between one hour after anchor drop and up to mooring release provide the best data for inter-comparison, as buoy motion decreases when the mooring is secure. However, because of the short overlap when both buoys were in the water, we use the longer time window available for the inter-comparison between the two buoys.

We used hourly averaged data (no quality control) transmitted through telemetry for NTAS 20 and from the recovered loggers for NTAS 19. The plots in Figure IV-111 to Figure IV-122 are timeseries for each variable measured from redundant sensors (there are two ASIMET sensors on each buoy, and one Campbell system on NTAS 20). Plots in Figure IV-133 to Figure IV-155 use the same data but present it as scatter plots between similar measurements from redundant sensors. These plots can serve both to identify variations in the surface meteorology in the region, and to evaluate the functionality and accuracy of the measurements. Note that some difference should be expected between similar measurements from redundant sensors on the same buoy and between buoys, due to errors such as flow distortion on the buoy or instrument errors, and also because the two buoys were several miles from each other (NTAS 20 anchor is 7.5 nm to the Southeast of NTAS 19 anchor). However, this comparison is useful as a preliminary evaluation of possible biases, which can be further investigated in the WHOI calibration laboratory.

Comparisons of the time-series and scatter plots indicate that for both NTAS 19 and NTAS 20 air temperature measurements on each buoy were within 0.1 °C for all 3 systems on NTAS 20 and system 2 on NTAS 19. However, system 1 on NTAS 19 had a warm bias. Air relative humidity from ASIMET system 1 and 2 on NTAS 20 agreed very well with each other and well within ASIMET's stated accuracy (less 2 %RH), and the Campbell was about 2 %RH wet. Humidity from system 2 on NTAS 19 was dryer by about 2 %RH, but since system 1 did not provide data at the time, this difference may be from actual differences in conditions between the two buoys.

Downwelling longwave radiation (LWR) on system 1 and 2 on NTAS 20 were within 1-2 W m⁻², and the Campbell system was almost 5 W m⁻² higher. System 1 and 2 on NTAS 19 agreed very well with each other and were a bit lower than NTAS 20 measurements, possibly due to the separation between the buoys. was lower than the other three similar measurements (system 1 NTAS 18 and systems 1 and 2 NTAS17); the scatter plot also indicates that this bias (roughly 5 W m⁻²) may increase for low and high values of LWR. For downwelling shortwave radiation (SWR), both primary ASIMET systems on each buoy agree within about 5 W m⁻², but the Campbell system on NTAS 20 is lagging in time and will require further investigation using 1-mn data upon recovery. There is some difference between the two buoys and this may be caused, at least in part, by actual different cloud coverage at the two locations.

Barometric pressure from ASIMET primaries on NTAS 20 are within 0.1 mb of each other, and Campbell is 0.15 mb higher, along with system 2 on NTAS 19. System 1 on NTAS 19 is 0.8 mb high.

Sea surface temperature from ASIMET primaries on NTAS 19 agree very well with each other. Good agreement with system 1 on NTAS 20 too, considering spatial separation. There is no SST data reported from system 2 on NTAS 20. The situation is similar for sea surface conductivity, except that conductivity from system 1 on NTAS 19 is biased low ($\sim 0.06 \text{ S m}^{-1}$).

Precipitation gauges on NTAS 19 reported about 1 mm rain on November 13 around 06:00 UTC. No rain was reported at NTAS 20 but there is no indication in the data that instruments are not functioning properly.

Only the two ASIMET wind speed instruments on NTAS 20 provided data for this intercomparison. Both instruments reported stable eastward wind near -6 m s^{-1} . The northward wind component is much smaller than the eastward component at NTAS which lies in the Trade wind region. System 1(2) reported a small positive (negative) northward wind. System 1 is logger 16 which is located on port side of buoy, and system 2 is logger 12 on starboard side. Since the buoy faces the incoming westward wind, the different signs of northward wind component on each sensor are consistent with the flow distortion previously reported studies (Bigorre et al 2013, Schlundt et al 2020), whereby the impinging wind diverges in front of the buoy and accelerates around the perimeter of the buoy halo.

Figure IV-111. Timeseries of hourly averages of near surface meteorology from NTAS 20 (transmitted through Iridium from ASIMET system1/logger5 and system 2/logger 3 in black, red lines and system4/Campbell in green line) and NTAS 19 (based on recovered 1-mn data in blue, magenta lines), while both platforms were in the water from November 12–13, 2021. From top: air temperature in °C, air relative humidity in %RH, barometric pressure in mbars, downwelling longwave and shortwave radiation in W m⁻². Black vertical dotted line represents time of NTAS 20 anchor drop (left) and time of NTAS 19 mooring release.

Figure IV-122. Same as Figure IV-111 but for eastward wind in m s⁻¹, northward wind in m s⁻¹, sea surface temperature in °C, sea surface conductivity in S m⁻¹, and precipitation accumulation in mm (bottom).

Figure IV-133. Scatter-plots of measurements in Figure IV-111 and Figure IV-122. collected between November 12–13 2021. From top to bottom, left to right: Air temperature in °C (top), downwelling shortwave radiation in W m⁻²air relative humidity in %RH (center) and downwelling longwave radiation in W m⁻².

Figure IV-144. Similar to Figure IV-133. From top to bottom, left to right: precipitation accumulation in mm , sea surface temperature in °C, barometric pressure in mbars, sea surface conductivity in S m⁻¹.

Figure IV-155. Similar to Figure IV-133. From top to bottom, left to right: Wind speed in m s⁻¹, wind speed to the east in m s⁻¹, wind heading in degrees and wind speed to the north m s⁻¹.

V. Ancillary Work

A. CTDs

During the NTAS 20 cruise, 10 CTD casts were operated. The first cast was done during transit between Rhode Island and the NTAS site and served as a test of the CTD package and acoustic releases prior to their deployment for NTAS 20. Two shallow casts were made each at NTAS 19 and NTAS 20 (within $\sim \frac{1}{4}$ nm from the buoys) for inter-comparison with the mooring subsurface instruments. The deepest cast (2300 m) was done 1 nm from the subsurface mooring MOVE 1 on behalf of the Scripps Institution of Oceanography. Table V-1 shows the time and location of each CTD cast made during PC-21-07 cruise.

Cast#	Date & Time UTC	Latitude N	Longitude W	Depth	Notes
				(m)	
1	11/8/2021 17:12	24° 38.488'	059° 21.557'	2020	Test with acoustic releases
2	11/11/2021 16:50	14° 48.35'	051° 02.07'	250	Intercomparison NTAS19 buoy
3	11/11/2021 22:00	14° 48.69'	051° 02.09'	250	Intercomparison NTAS19 buoy
4	11/12/2021 22:00	14° 44.34'	050° 57.73'	250	Intercomparison NTAS20 buoy
5	11/13/2021 12:00	14° 43.73'	050° 57.62'	250	Intercomparison NTAS20 buoy
6	11/14/2021 2:30	15° 26.36'	051° 32.25'	2300	1 nm from MOVE 1-14
7	11/14/2021 11:00	15° 22'	052° 39'	250	
8	11/14/2021 17:00	15° 20.275'	053° 38.148'	250	
9	11/14/2021 23:00	15° 19'	054° 38.01'	250	
10	11/15/2021 11:00	15° 13.81'	056° 35.8'	250	Problem with electronics

Table V-1. CTD casts during PC 21-07 cruise.

Figure V-1. Ship track (red), locations of CTD casts (black crosses) during NTAS 20 cruise PC-21-07, and anchors positions for NTAS 19 and 20 moorings (blue crossed circles).

Figure V-2. Profiles from CTD cast#2 (top) and cast#4 (bottom).

References

Bigorre S., R. Weller, J. Edson, J. Ware, 2013. A surface mooring for air-sea interaction research in the Gulf Stream. Part 2: Analysis of the observations and their accuracies. *J. Atmos. Ocean. Tech.*, v. 30 (3), pp. 450-469. doi: http://dx.doi.org/10.1175/JTECH-D-12-00078.1

Schlundt, M., J.T. Farrar, S.P. Bigorre, A.J. Plueddemann, and R.A. Weller, 2020: Accuracy of Wind Observations from Open-Ocean Buoys: Correction for Flow Distortion. *J. Atmos. Oceanic Technol.*, **37**, 687–703, https://doi.org/10.1175/JTECH-D-19-0132.1

Acknowledgements

We thank the captain and crew of the NOAA FSV Pisces for accommodating the science mission and providing expertise critical to the success of the mooring operations. Special thanks to Drew Cole for his excellent professionalism in leading and executing mooring operations at sea. The NTAS project is supported by the National Oceanic and Atmospheric Administration (NOAA), Global Ocean Monitoring and Observing (GOMO) Program (formerly Ocean Observing and Monitoring Division), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA19OAR4320074, Fund Ref number (100007298).

Appendix 1: NTAS 19 Mooring Log

(fill out log with bla	ck ball point pen only)			
ARRAY NAME AND NO. NTAS-19	MOORED STATION NO.			
Launch (a	nchor over)			
Date (day-mon-yr) _22-0c+ - 2020	Time1903UTC			
Deployed by Picture / Hasbrouck	Recorder/Observer Pluedemann			
Ship and Cruise No. R. Brown RB-20-06	Intended Duration 365 days			
Depth Recorder Reading m Depth Correction m	Correction Source_XBT sound speed profile for millibean			
Corrected Water Depth 4985 m	Magnetic Variation (E/W)			
Anchor Drop Lat. (N/S) 14° 49,445	Lon. (E/W) 51° 00. 781 Lon. (E/W) 51° 00.963			
Surveyed Pos. Lat. (N/S) 14° 49.475				
Argos Platform ID NoNA(Iridivm)	Additional Argos Info on pages 2 and 3			
Acoustic Release Model 8242 BACS	Tested to 500m			
Release No. 1 (sn)33411	Release No. 2 (sn) 48282			
Interrogate Freq. <u>11 kHz</u>	Interrogate Freq // KHz			
Reply Freq. 12 kHz	Reply Freq. 12 KHz			
Enable361167	Enable 570013			
201205	Disable 570030			
Disable 361205				
Disable <u>361205</u> Release <u>346426</u>	Release 551262			
Disable <u>361205</u> Release <u>346426</u> Recovery (r	Release <u>551262</u> release fired)			
Disable <u>561205</u> Release <u>346426</u> Recovery (r Date (day-mon-yr) <u>11, 13, 2021</u>	Release 551262 release fired) Time_14:22UTC			
Disable <u>361205</u> Release <u>346426</u> Recovery (r Date (day-mon-yr) <u>11, 13, 2021</u> Latitude (NS) <u>14, 49, 364</u>	Release <u>551262</u> release fired) Time <u>14:22</u> UTC Longitude (E/W) <u>051°01.362'</u>			
Disable <u>361205</u> Release <u>346426</u> Recovery (r Date (day-mon-yr) <u>11.13.2021</u> Latitude (N/S) <u>14.49.364</u> Recovered by <u>Cole / Graham</u>	Release 551262 release fired) Time_14:22 UTC Longitude (E/W) _051 01.362^{\prime} Recorder/Observer $S \cdot B_{3} + 01.262^{\prime}$			

ARRAY NAME AND NC	. NTAS-19	MOORED	STATION NO.
-------------------	-----------	--------	-------------

Buoy Markings	Buoy Markings If Sound adrist ,, WHOI 508-457-1401						
	S	Surface Instr	rumentation				
ltem	ID #	Height*	Comments				
ASIMET LOR	105	-	port side				
HRH	505	230	PIC-24, SD card				
BPR	203	240	PIC-24, SD card				
WND	-346	260	replaced w/SN 221] damaged o				
PRC	-501	260	replaced w/ SN 215 _ deployment				
LWR	253	282	1 1				
SINR	216	282					
SST	1725	-150					
Iridium			IMEI 300234063854580				
ASIMET LGR	L03	-					
HRH	258	230					
BPR	502	240					
WND	210	260					
PRC	218	260					
LWR	214	282	and the second				
SINR	253	282					
SST	1305	- 150					
Fridium			IMET 300234063341510				
WXT	202	245					
SBE 39-AT	5272	230	A REPORT OF A R				
Lascar	1111	230					
5	911 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
		100					

ltem	ID #	Depth [†]	Comments
SBE-56	7206	80	90° CW STOM Vane
SBE-56	7207	80	180°
SBE-56	7208	95	1800
SBE-56	7209	110	180°
SBE-56	7210	80	270°
WAMDAS			not transmitting
Brizd-X	0370		IMET 300125060155490
Xeos Melo			INET 300634013709580
Rover			INET 300434064 537420
Rover	ĸ		IMET 300434063297420
KILD			IMEI 300234067205440
TTIONM			IMEL 30022 401004 St du *transferred from NTNS is budy after receivery
			and a second second
		e	
			a deserver a server a
	†E	Depth below b	uoy deck in centimeters

ARRAY NAME AND NO. NTAS-19 MOORED STATION NO.

1

(

ARRAY NAME AND NO. MTAS-19 MOORED STATION NO.

ltem No.	Length (m)	ltem	Depth	Inst No.	Time Over	Time Back	Notes
1		buoy			1311	2025	PRC broken on deployment both lights on at recovery
2	5	EM Chain				TANGUAR -	
3		SBE-39	5	7680	1311	2040	100
4	6	Nortek	5,7	12688	1311	2040	or S/N 117249 (recovered)
5	79	7/16" WISC	0				
6		SBE-37	10	13409	1312	2040	IM
7		Nortek	13	16085	1312	2111 ondock	IM (Sailed)
8		SEE 39	15	7681	1312	2112de	,
9	2.00	S& 39	20	7682	1312	2116 deck	
10		Nortek ADCP	24	15795	1312	2118 deck	uplooking) intangled
11	1	58E-37	25	13410	1312	2118 deck	FM leine of Fishingear
12		SBE-39	30	7683	1313	2119	0
13		SBE-39	35	7684	1313	219	s ⁴
14		SBE 37	40	13411	1315	2119	IM
15		SBE 39	45	7687	1315	2119	
16		SBE 39	50	7688	1315	2119	
17		SBE 37	55	13412	1319	1948	IM
18		驱到	60	7689	1323	1947	
19		SEE 39	65	7690	1325	1946	
20		SBE37	70	13413	1329	1944	IM
21		56E 39	75	7691	1331	1943	
22		5BE 39	80	7693	1333	1941	provint oach after instrustors and revoluted and let free
23		ROI	85	23281	1338	1935	uplooking
24	500	3/8 wire		21254	1338		
25		SBE 39	90	7694	1340	1933	6

ARRAY NAME AND NO. NTAS-19 MOORED STATION NO.

ltem No.	Length (m)	ltem	Depth	Inst No.	Time Over	Time Back	Notes
26	1	SBE 39	100	7696	1342	1932	
27		star- addi	110	5275	1343	1931	Very fuzzy
28		stari	120	5276	1344	1930	
29		star Ji	130	5277	1346	1930	Fuzz Stants here
30	F.,	starj.	140	5278	1347	1929	
31		staffi	150	5279	1348	1928	
32		Stafi	160	5280	1349	1928	
33	500	3/8 wire	-	20090-2	1408	1915 Jack	huckle in shackle
34	300	3/8wire		20090-1	1426	19100	mt
35	200	3/8 wine	-	19027-5	1443	凶	
36	100	3/8 wire		19027-6	1449	1905	7 special termination
37	200	7/8 nylon	1		1454		- encapsulated
38	500	7/8 nyion			1511		
39	2000	34 nybr					
40	100	7/8 mylon				1830	
41	1500	1"colmag	a	u - 15	1550	1800 -	start hauling in on drow
42	-	glass			1634	1716	44444 44444 4444 = 56 6 broken balls
43		SBE 37		12246	1821	1716	7 38m above bottom
44		SBE 37		12247	1821	1716	
45	5	1/2 chain					
46		release	8	33411	1827	1718	7 Jual releases an
47		release.		48282	1827	1718] load bracket
48	5	1/2 chain					
49	20 5	1"nystio	Ω				
50		Anchor		-6	1903		

Date/Time	Comments					
11.13.21 15:15	Glass balls @ stee (55 ma after release)					
	· · · · ·					
2						
- 10						
to .						
Provide and the second se						

Appendix 2: NTAS 20 Mooring Log

(fill out log with bl	ack ball point pen only)		
ARRAY NAME AND NO. NTAS - 20	MOORED STATION NO	_	
Launch (a	anchor over)		
Date (day-mon-yr) 12 - Nov - 2021	Time 18:57		
Deployed by Cole / Graham	Recorder/Observer	_	
Ship and Cruise No. Pisces PC -21 - 07	Intended Duration 365 days	_	
Depth Recorder Reading 5044 m	Correction Source local speed of		
Depth Correction w/A m	sound fed into EK60		
Corrected Water Depth m	Magnetic Variation (E/W)	/	
Anchor Drop Lat. (N)S) 14 944 .958	Lon. (E/W) <u>050° 56.170'</u> Lon. (E/W) <u>050° 56.332'</u> Additional Argos Info on pages 2 and 3 Tested to <u>2000</u> r		
Surveyed Pos. Lat. (NYS) 14° 44.897'			
Argos Platform ID No.			
Acoustic Release Model Edgetech			
Release No. 1 (sn) 51917	Release No. 2 (sn) 51915		
Interrogate Freq. 11 kHz	Interrogate Freq. 11 LHz		
Reply Freq. 12 hHz	Reply Freq. 12 LHz		
Enable340011	Enable 337703		
Disable 340032	Disable337720		
Release 335364	Release 33 5322		
Recovery (release fired)		
Date (day-mon-yr)	Time		
Latitude (N/S)	Longitude (E/W)		
Recovered by	Recorder/Observer		
Ship and Cruise No	Actual duration	da	
Distance from waterline to buoy deck	15 cm		

ARRAY NAME AND NO. NTAS 20	MOORED STATION NO.
Surface Co	omponents

Buoy Type NOB Color(s) Hull Tower blue hull, yellow deck

Buoy Markings_

Item	ID #	Height*	Comments
ASIDETLER	216		Port side
HRH	256	232	
BPR	205	239	
WND	225	267	
PRC	319	253	
LWR	207	283	
SWR	207	283	一、"你们有关,你们的"你"。
SST	1419	-150	
Bridium			INEI 3002 3406 3167 170
ASINET LGR	L12		Starboard side
HRH	365	230	
BPR	506	237	
WND	238	267	2
PRC	230	253	
LWR	243	283	
SWR	354	283	
SST	1835	-150	
Iridium			INEI 3002 3406 3346 490
standalones			
WXT	209	267	
Lascar	N20	193	<u> </u>
SBE 39 - AT	5276	228	
			sento da e

ARRAY NAME AND NO. MTAS 20 MOORED STATION NO.

Item	ID #	Depth [†]	Comments
SRE51	6979	90	135° dockwise boking at buoy vane
CRES6	6980	80	180°
SRESG	6982	90	1800
SBE56	6983	90	225°
WAJDAS			INEI 3001 2400 0115 920; NDBC 24361 SIN 8988 1693 1200 205 0000
BRIZO	116	228	
Xeuskilo	0882		3002 3406 2644 350
XOUS NELO			3000 3401 2615 100
Xeus Dover	1033		3004 3406 4530 420
Xeos Rover	590		3004 3406 1508 050
Subsurface Tridium			11161 3002 2401 0043 720
Above			
Campbell			
HRH		233	
BPR		218	
SWR		283	
LWR		283	
PRC		253	
Geoforce	2-32-03 588		
netocean		÷	INEI 3004 3406 5342 370

Item No.	Length (m)	ltem	Depth	Inst No.	Time Over	Time Back	Notes
1		buoy			1234		
2	5	Enchain			1220		
3		SBE 39	5	8743	1220		
4		Nortek ADCIT	5.7	9407	1220		
5	79	7/16 "	21054-	2			
6		SBE 37	10	669	1220		117
7		Nortek	13	5973	1220		IN.
8		SBE39	15	7697	1220		
9		SBE39	20	7695	1220		
10	1	Nortek ADCP	2454	12391	1220		- brough back tive, clauped
11		SBE37	25	683	1220		m
12		SBE 39	30	8744	1220		
13		SBE 39	35	8745	1220	1.	
14		SBE 37	40	684	1220		in
15		SBE 39	45	8746	1220		
16		SBE39	50	8747	1235		
17		SBE37	55	685	13435		רוו
18		SBE39	60	8748	13 40		
19		SBE 39	65	8749	品梅		
20		SBE 37	70	686	1347		<i>١٦</i>
21		SBE 39	75	8750	1248		
22		SBE39	80	8751	+2353		
23		R D I ADCP	85	23281	1358-59	1	uplocking
24	500	3/8" wire	21054-4			Ý	
25		SBE 39	90	8752	200	124	A Carlos Carlos

ARRAY NAME AND NO. MTAS 20 MOORED STATION NO.

ARRAY NAME AND NO. _____ MOORED STATION NO. ____

SI

Item No.	Length (m)	Item	Depth	Inst No.	Time Over	Time Back	Notes
26		SBE 39	100	8753	1300		5
27		SBE39	110	8754	14 04		
28		Star- oddi	110	5282	1404		
29		Starodi	120	5283	1906		A
30		Stardet	130	5284	1407		1
31		Staroddi	140	5285	1408		1 N 1
32		Star Oddi	150	5286	1409	No.	
33		Star Oddi	160	5287	1410		
34	Sou	3/8 "wile	21054-5	21054-5	1419		Ship speed in weaks to 1 kt
35	500	3/8" wite	1.1	21054-8	1432		ship speed & 1.25 kt
36	200	3/8 wire		21054-9	1445		
37	100	3/8 wire	145 1	21054-7	1452		Tencapsulated terminati
38	200	7/8 Ny lon			1455		
39	500	7/8 nylon	8	-	eneap		
40	2000	3/4 nylon	11				
41	100	7/8 nig Jon	1	-			
42.	1500	1"Golmega			15451620		
43		Glass (56)		=	1700		56 635.
44	10 m	SBE 37		11392	1844 in water		
45		SBE37		11393	18 4 24	serie it	
46	5	1/2" chain			S. 4. 4		
47		release		51917	1844		
48		release	e	51915	1844		
49	5	1/2 "chain					
50	20	1" Samson					

ARRAY NAME AND NO. _____ MOORED STATION NO. _____

ltem No.	Length (m)	ltem	Depth	Inst No.	Time Over	Time Back	Notes
51	5	1/2" chinin			1800.0		
52		anchor			1857		6000 lbs wet, 7000lbs air
53							
54		Add	tions			с. "	
55							
56		RBR SoloD	6	78198			
57		RBR SOLOD	83	78197			
58							
59							
60						1. 1.	
61			30			144	
62						1.20	
63			12			Les	
64							
65			1				
66							· · · · · · · · · · · · · · · · · · ·
67					1		
68							
69							
70							
71							
72							
73							
74						. A	
75		1.1			5000		

Appendix 3: NTAS 20 Instrument Setup

ASIMET Logger 16:

Model: LOGR53 SerNum: L016 CfgDat: 05FEB02 Firmware: LOGR53 v4.38-1spurs2 RTClock: 2021/11/10 18:12:37 Logging Interval: 60; Current Tick: 48 R-interval: 1 Compact Flash Card present - Compact Flash OK! Volume in drive is L16 Directory of CF: 2021/11/10 18:12 0 L16.INF 2021/11/10 18:12 0 L16.DAT 2 File(s) 0 bytes 256703488 bytes free Iridium: MET data enabled Iridium MET status: SBDI Failed - timeout Sampling STOPPED Sampling GO - synchronizing ...

ASIMET Logger 12:

Model: NEWLGR53 SerNum: CA001 CfgDat: 05MAY16 Firmware: LOGR53 v4.38-1spurs2 RTClock: 2021/11/10 18:16:03 Logging Interval: 60; Current Tick: 4 R-interval: 1 Compact Flash Card present - Compact Flash OK! Volume in drive is L12 Directory of CF: 2021/11/10 18:14 0 L12.INF 2021/11/10 18:14 0 L12.DAT 2 File(s) 0 bytes 256703488 bytes free Iridium: MET data enabled Iridium MET status: SBD Message OK Sampling GO

Vaisala WXT:

WXT01 209 VAISALA24 v5.65 ASIPIC24 RevA 9APR19 RTCC: 2021/11/10 18:18:46 DS3232: 2021/11/10 18:18:46 SD Card found 2021-11-10 18:18:36 240 ASWXT209.ID 2021-11-10 18:18:38 0 ASWXT209.DAT 2021-11-10 18:18:40 0 ASWXT209.INF SD Card formatted for this ASIMET module! Sampling STOPPED

Sampling GO synchronizing.....

<u>RBR Solo D 78198 (6 m, mounted on bellmouth) and 78197 (83 m, mounted on ADCP cage):</u>

tup Calibration				
ogger details	Schedule			
Model: RBRsolo D	Logger status	Schedule enabled		
Generation: Late 2014	Logger clock	2021-11-10 15:58:32Z	UTC sync Local sync	
Serial: 078197	Start logging	11/11/2021 💷 1:00 AM 🔹	Start immediately	
Firmware: 3.290	Sampling mode	Continuous C Tide Wave	Wave bandwidth estimates	
Battery: 🥑		Period Rate 16Hz	4917 Instrument altitude (m)	
	Sampling	Wave duration (samples) 16384 -	5000 Mean depth of water (m)	
	Sampin's	Wave measurement period 06:00:00	Wave bandwidth: 0.0010 to 0.0524 H Wave periods: 19.094 to 1024s	
	End logging	2023-12-10 (~759 days, battery limited)	Fresh battery	
top logging Use last s RBRsolo 078198	etup Memory u	ised: <1%	Downloa	
top logging Use last s RBRsolo 078198 X tup Calibration	etup Memory u	ised: <1%	Downloa	
top logging Use last s RBRsolo 078198 tup Calibration Logger details	Schedule	ised: <1%	Download	
top logging Use last s RBRsolo 078198 tup Calibration Logger details Model: RBRsolo D Generation: Late 2014	Schedule Logger status Logger clock	sed: <1% <table> Schedule enabled 2021-11-10 16:00:17Z</table>	UTC sync Local sync	
top logging Use last s RBRsolo 078198 tup Calibration Logger details Model: RBRsolo D Generation: Late 2014 Serial: 078198	Schedule Logger status Logger clock Start logging	Schedule enabled 2021-11-10 16:00:17Z 11/11/2021 □- 1:00 AM →	UTC sync Local sync	
top logging Use last s RBRsolo 078198 tup Calibration Logger details Model: RBRsolo D Generation: Late 2014 Serial: 078198 Firmware: 3.290	Schedule Logger status Logger clock Start logging Sampling mode	Schedule enabled 2021-11-10 16:00:17Z 11/11/2021 Tide Ocontinuous	Download UTC sync Local sync Start immediately Wave bandwidth estimates	
top logging Use last s RBRsolo 078198 tup Calibration Logger details Model: RBRsolo D Generation: Late 2014 Serial: 078198 Firmware: 3.290 Battery:	Schedule Logger status Logger clock Start logging Sampling mode	Schedule enabled 2021-11-10 16:00:17Z 11/11/2021 Tide Ocontinuous Tide Wave Period Rate	Download UTC sync Local sync Start immediately Wave bandwidth estimates 4994 Instrument altitude (m)	
top logging Use last s RBRsolo 078198 tup Calibration Logger details Model: RBRsolo D Generation: Late 2014 Serial: 078198 Firmware: 3.290 Battery:	Schedule Logger status Logger clock Start logging Sampling mode	Schedule enabled 2021-11-10 16:00:17Z 11/11/2021 T 1:00 AM Continuous Tide @ Wave Period @ Rate 16Hz Wave duration (samples) 16384	UTC sync Local sync Start immediately Wave bandwidth estimates 4994 Instrument altitude (m) 5000 Mean depth of water (m)	
top logging Use last s RBRsolo 078198 tup Calibration Logger details Model: RBRsolo D Generation: Late 2014 Serial: 078198 Firmware: 3.290 Battery: \heartsuit	Schedule Logger status Logger clock Start logging Sampling mode Sampling	Schedule enabled 2021-11-10 16:00:17Z 11/11/2021 1:00 AM Continuous Tide Wave Period Rate 16Hz Wave duration (samples) 16384 Wave measurement period 06:00:00 Co:00 Co:00 Co:00 Co:0	Download UTC sync Local sync Start immediately Wave bandwidth estimates 4994 Instrument altitude (m) 5000 Mean depth of water (m) Wave bandwidth: 0.0010 to 0.2500 Wave periods: 4.000 to 1024s	

Starmon ODDI:

 Filename: C:\Software\Star

 Oddi\SeaStar\Starmon mini\T5282\T5282.RDT

 SeaStar 8.90

 Recorder type
 : Starmon mini

Recorder type: Starmon miniRecorder number: T5282Recorder version: 23 CRC8/38400/HighResRecorder measures: TemperatureRecorder memory(Meas/Byte): 262032 / 524063Measurement sequence number : 5: 10/19/21 6:12:40 PM

Measurement interval def. : Single interval = 00:10:00

Measurement start time : 11/4/21 1:00:00 AM

Measurement settings: [dd:hh:mm:ss] x number

Start delay :	15:06:47:20
1. interval period	: 00:10:00 x 65520
2. interval period	: 00:10:00 x 65520
Estimated time dur	ration and battery usage for NMS

Battery energy at initiation time(%) : 97,9 Battery energy at measurement start (%): 97,7

Cycle 1

Meas.taken

Seq/Inr Date&Time Batt.used(%) Mem.used(%) Temp 1/12/2/23 1:00:00 AM 5 25 65521 2/25/2/24 1:00:00 AM 11 50 131041 Cycle 2 Meas.taken Batt.used(%) Seq/Inr Date&Time Mem.used(%) Temp 1/1 7/31/25 1:00:00 AM 75 17 196561 : 10/28/26 4:50:00 PM Memory full After (days:hours) : 1819:15 In Cycle : 2 In sequence : 2 In Interval :1 In measurement : 65471

Total meas. taken: 262032Battery used (%): 23,5Battery remaining (%): 74,2

Filename: C:\Software\Star-Oddi\SeaStar\Starmon mini\T5283\T5283.RDT SeaStar 8.90

Recorder type: Starmon miniRecorder number: T5283Recorder version: 23 CRC8/38400/HighResRecorder measures: TemperatureRecorder memory(Meas/Byte): 262032 / 524063Measurement sequence number : 4Recorder started from PC: 10/19/21 6:19:57 PM

Measurement interval def. : Single interval = 00:10:00Measurement start time : 11/4/21 1:00:00 AM

Measurement settings: [dd:hh:mm:ss] x number

Start delay : 15:06:40:03

1. Interval period	•	00.10.00	Х	05520
2. interval period	:	00:10:00	х	65520

Estimated time duration and battery usage for NMS

Battery energy at initiation time(%) : 97,9 Battery energy at measurement start (%): 97,7

Cycle	1			Ν	/leas.taken
Seq/In	nr D	ate&Time	Batt.u	sed(%)	
Mem.	used(%) Temp			
1/1	2/2/23	1:00:00 AM	15	25	65521
2/2	5/2/24	1:00:00 AM	I 11	50	131041

 Cycle 2
 Meas.taken

 Seq/Inr
 Date&Time
 Batt.used(%)

 Mem.used(%)
 Temp
 1/1
 7/31/25 1:00:00 AM
 17
 75

 196561

Memory full: 10/28/26 4:50:00 PMAfter (days:hours): 1819:15In Cycle: 2In sequence: 2In Interval: 1In measurement: 65471Total meas. taken: 262032Battery used (%): 23,5Battery remaining (%): 74,2

Filename: C:\Software\Star-Oddi\SeaStar\Starmon mini\T5284\T5284.RDT SeaStar 8.90

Measurement settings: [dd:hh:mm:ss] x number

Start delay :	15:	06:38:16		
1. interval period	:	00:10:00	х	65520
2. interval period	:	00:10:00	х	65520

Estimated time duration and battery usage for NMS

Battery energy at initiation time(%) : 97,9 Battery energy at measurement start (%): 97,7

Cycle	e 1					Me	as.taken
Seq/I	nr	Da	te&Tiı	ne	Batt.use	ed(%)	
Mem	.use	d(%)) Te	mp			
1/1	2/2	/23	1:00:00	ÀM (5	25	65521
2/2	5/2	/24]	1:00:00) AM	11	50	131041
Cycle	e 2					Me	as.taken
Seq/I	nr	Da	te&Tiı	ne	Batt.use	ed(%)	
Mem	.use	d(%)) Te	mp			

1/1 7/31/25 1:00:00 AM 17 75 196561

Memory full	: 10/28/26 4:50:00 PM
After (days:hours)	: 1819:15
In Cycle	: 2
In sequence	: 2
In Interval	: 1
In measurement	: 65471
Total meas. taken	: 262032
Battery used (%)	: 23,5
Battery remaining	(%) : 74,2

Filename: C:\Software\Star-Oddi\SeaStar\Starmon mini\T5285\T5285.RDT SeaStar 8.90

Recorder type	: Starmon mini
Recorder number	: T5285
Recorder version	:23 CRC8/38400/HighRes
Recorder measures	: Temperature
Recorder memory(Mea	s/Byte) : 262032 / 524063
Measurement sequence	number : 4
Recorder started from I	PC : 10/19/21 6:24:04 PM
Measurement interval d	lef. : Single interval =

00:10:00 Measurement start time : 11/4/21 1:00:00 AM

Measurement settings: [dd:hh:mm:ss] x number

 Start delay
 : 15:06:35:56

 1. interval period
 : 00:10:00 x 65520

 2. interval period
 : 00:10:00 x 65520

Estimated time duration and battery usage for NMS _____ Battery energy at initiation time(%) : 97,9 Battery energy at measurement start (%): 97,7 _____ Cycle 1 Meas.taken Seq/Inr Date&Time Batt.used(%) Mem.used(%) Temp 1/1 2/2/23 1:00:00 AM 5 25 65521 2/2 5/2/24 1:00:00 AM 11 50 131041 Cycle 2 Meas.taken Seq/Inr Date&Time Batt.used(%) Mem.used(%) Temp 1/1 7/31/25 1:00:00 AM 17 75 196561 : 10/28/26 4:50:00 PM Memory full

After (days:hours) : 1819:15

In Cycle : 2 In sequence : 2 In Interval : 1 In measurement : 65471 Total meas. taken : 262032 Battery used (%) : 23,5 Battery remaining (%) : 74,2

Filename: C:\Software\Star-

Oddi\SeaStar\Starmon mini\T5286\T5286.RDT SeaStar 8.90

Recorder type : Sta	rmon	mini	
Recorder number : 7	[5286		
Recorder version : 23	3 CRC	C8/38400/I	HighRes
Recorder measures :	Гетре	rature	U
Recorder memory(Meas/By	rte) : 2		24063
Measurement sequence nun	nber : 4	4	
Recorder started from PC	: 10/1	9/21 6:25:	28 PM
Measurement interval def. 00:10:00	: Sing	le interval	=
Measurement start time :	11/4/2	21 1:00:00	AM
Measurement settings: [dd:	hh:mn	n:ss] x nur	nber
Start delay : 15:06:34	·:32		
1. interval period : 00:10	0:00 x	65520	
2. interval period : 00:10	0:00 x	65520	
Estimated time duration and	l batte	ry usage fo	or NMS
Battery energy at initiation Battery energy at measurem	time(% nent sta	6) : 97,9 art (%): 97	7,7
Cvcle 1		Mea	is.taken
Seq/Inr Date&Time H	Batt.us	ed(%)	
Mem.used(%) Temp			
1/1 2/2/23 1:00:00 ÅM	5	25	65521
2/2 5/2/24 1:00:00 AM	11	50	131041
Cycle 2		Mea	is.taken
Seq/Inr Date&Time H	Batt.us	ed(%)	
Mem.used(%) Temp			
1/1 7/31/25 1:00:00 AM	17	75	
196561			
Memory full : 10/2	28/26 4	4:50:00 PN	Л
After (days:hours) : 18	19:15		
In Cycle : 2			
In sequence : 2			
In Interval : 1			
In measurement : 65	471		
Total meas. taken : 26	2032		
Battery used (%) : 23	3,5		

Battery remaining (%) : 74,2

Filename: C:\Software\Star-Oddi\SeaStar\Starmon mini\T5287\T5287.RDT SeaStar 8.90

_____ Recorder type : Starmon mini Recorder number : T5287 Recorder version : 23 CRC8/38400/HighRes Recorder measures : Temperature Recorder memory(Meas/Byte) : 262032 / 524063 Measurement sequence number : 4 Recorder started from PC : 10/19/21 6:26:43 PM _____ Measurement interval def. : Single interval = 00:10:00 Measurement start time : 11/4/21 1:00:00 AM _____ Measurement settings: [dd:hh:mm:ss] x number Start delay : 15:06:33:17 1. interval period : 00:10:00 x 65520 2. interval period : 00:10:00 x 65520 Estimated time duration and battery usage for NMS _____ Battery energy at initiation time(%) : 97,9 Battery energy at measurement start (%): 97,7 _____ Cycle 1 Meas.taken Seq/Inr Date&Time Batt.used(%) Mem.used(%) Temp 1/1 2/2/23 1:00:00 AM 5 25 65521 2/2 5/2/24 1:00:00 AM 50 11 131041 Cycle 2 Meas.taken Seq/Inr Date&Time Batt.used(%) Mem.used(%) Temp 1/1 7/31/25 1:00:00 AM 17 75 196561 Memory full : 10/28/26 4:50:00 PM After (days:hours) : 1819:15 : 2 In Cycle In sequence : 2 : 1 In Interval In measurement : 65471 Total meas. taken : 262032 Battery used (%) : 23.5 Battery remaining (%) : 74,2

TRDI ADCP 23281 (85 m):

[BREAK Wakeup A] WorkHorse Broadband ADCP Version 50.41 Teledyne RD Instruments (c) 1996-2014 All Rights Reserved. >ps0Instrument S/N: 23281 Frequency: 307200 HZ Configuration: 4 BEAM, JANUS Match Layer: 10 Beam Angle: 20 DEGREES Beam Pattern: CONVEX Orientation: UP Sensor(s): HEADING TILT 1 TILT 2 DEPTH TEMPERATURE PRESSURE Pressure Sens Coefficients: c3 = -1.522438E-169c2 = -1.833885E-07c1 = +3.232684E-01Offset = -1.122043E+01Temp Sens Offset: 0.15 degrees C CPU Firmware: 50.41 [0] Boot Code Ver: Required: 1.17 Actual: 1.17 DEMOD #1 Ver: ad48, Type: 1f DEMOD #2 Ver: ad48, Type: 1f PWRTIMG Ver: 85d3, Type: 6 Board Serial Number Data: A0 00 00 07 BE DC 30 09 REC727-1000-04E DF 00 00 07 A6 F1 9E 09 CPU727-2011-00E 0B 00 00 07 A7 02 1D 09 DSP727-2001-04H FA 00 00 08 8C CF 9F 09 PIO727-3000-00G >rr Recorder Directory: Volume serial number for device #0 is 206f-6241 RDI 000 000 4676100 10-26-20 10:22:36p r a[2] RDI 001 000 0 10-19-21 8:30:02pr a [01 Bytes used on device #0 = 4676100Total capacity = 256352256 bytes Total bytes used = 4676100 bytes in 2 files Total bytes free = 251674624 bytes >re Must use 'RE ErAsE' or 're ErAsE' to erase recorder! Recorder not erased. >r RE ErASe Must use 'RE ErAsE' or 're ErAsE' to erase recorder!

Recorder not erased.

>RE ErAsE erasing... Recorder erased. >rr Recorder Directory: Volume serial number for device #0 is 206f-6241 No files found. Bytes used on device #0 = 0Total capacity = 256352256 bytes Total bytes used = 0 bytes in 0 files Total bytes free = 256352256 bytes >CR1[Parameters set to FACTORY defaults] >CF11101 >EA0 >EB0>ED850 >ES35 >EX11111 >EZ1111101 >WA50 >WB0>WD111100000 >WF300 >WN25 >WP180 >WS400 >WV175 >TE01:00:00.00 >TP00:01.00 >TF21/11/04 01:00:00 >CK [Parameters saved as USER defaults] >CS

Nortek current meter 9407 (5.7 m):

Deployment : N20 Current time : 10/14/21 12:44:47 PM Start at : 11/2/21 1:00:00 AM Comment: AQD 9407, 5.7m, N20, 2 Li BATS

Measurement interval (s) : 1200 Average interval (s) : 180 Blanking distance (m) : 1.01 Measurement load (%) : 4 Power level : HIGH-Diagnostics interval(min) : 1440:00 Diagnostics samples : 100 Compass upd. rate (s) : 1

Coordinate System : ENU Speed of sound (m/s) : MEASURED Salinity (ppt) : 36 Analog input 1 : NONE Analog input 2 : NONE Analog input power out : DISABLED Raw magnetometer out : OFF File wrapping : OFF TellTale : OFF AcousticModem : OFF Serial output : OFF Baud rate : 9600 _____ Assumed duration (days): 540.0 Battery utilization (%): 84.0 Battery level (V):11.2 Recorder size (MB):9 Recorder free space (MB): 6.888 Memory required (MB): 3.7 Vertical vel. prec (cm/s): 1.4 Horizon. vel. prec (cm/s): 0.8 Instrument ID : AQD 9407 : AQD 4758 Head ID Firmware version : 3.39 _____

Aquadopp Version 1.40.14 Copyright (C) Nortek AS

Nortek current meter 5973 (13 m):

Deployment : N20 Current time : 11/7/21 3:46:16 PM Start at : 11/7/21 4:00:00 PM Comment: AQD 5973, NTAS 20, 2 Li Batteries,13m, SIM ID# 041, deploy

Measurement interval (s): 1200 Average interval (s): 180 Blanking distance (m): 0.37Measurement load (%): 4 Power level : HIGH-Diagnostics interval(min): 1440:00 Diagnostics samples : 50 Compass upd. rate (s) : 1 Coordinate System : ENU Speed of sound (m/s) : MEASURED Salinity (ppt) : 36 Analog input 1 : NONE Analog input 2 : NONE Analog input power out : DISABLED Raw magnetometer out : OFF File wrapping : OFF
TellTale : OFF AcousticModem : OFF Serial output : OFF Baud rate : 9600 _____ Assumed duration (days): 540.0 Battery utilization (%): 85.0 Battery level (V):11.1 Recorder size (MB):9 Recorder free space (MB): 8.973 Memory required (MB): 2.7 Vertical vel. prec (cm/s) : 1.4 Horizon. vel. prec (cm/s): 0.8 _____ Instrument ID : AQD 5973 Head ID : ALD 3619 Firmware version : 3.36 _____ Inductive modem : ENABLED Device ID : 41 Transmit power level : HIGH Data format : ASCII Coupler impedance : Z = 1861IMM configuration: <HardwareData DeviceType='SBE90554 IMM' SerialNumber='70000899'> <Manufacturer>Sea-Bird Electronics, Inc</Manufacturer> <HardwareVersion>41420H.1</HardwareVersion> <HardwareVersion>PCB Type 3, 10345B</HardwareVersion> <MfgDate>2009-11-03</MfgDate> <FirmwareVersion>IMM Ver 1.12</FirmwareVersion> <FirmwareDate>Jun 15 2009</FirmwareDate> <FirmwareLoader>MSP LOADER RS232 57.6K 2007-02-08</FirmwareLoader> </HardwareData> <StatusData DeviceType='SBE90554 IMM' SerialNumber='70000899'> <HostID>Host ID not set</HostID> <EventSummary numEvents='316'/> <Power><TransmitVoltage>8.9</TransmitVoltage>< /Power> <SampleDataSummary NumSamples='0' TotalLen='0' FreeMem='16384'/> <HostFileSummary Len='784' CRC='0x5BEEFB78'/> <LineStatus>BUSY</LineStatus> </StatusData>

<ConfigurationData DeviceType='SBE90554 IMM' SerialNumber='70000899'> <Settings ConfigType='2' DebugLevel='2' BaudRate='9600' HostID='Host ID not set' GdataStr='GDATA' HostPrompt='x' ModemPrompt='IMM>' DeviceID='41' EnableHostFlagWakeup='0' EnableHostFlagConfirm='0' EnableHostFlagTerm='0' EnableSerialIMMWakeup='1' EnableHostPromptConfirm='0' EnableHostServeOnPwrup='0' EnableAutoIMFlag='1' EnablePrompt='1' EnableHostWakeupCR='0' EnableHostWakeupBreak='0' EnableEcho='0' EnableSignalDetector='1' EnableToneDetect='0' EnableFullPwrTX='1' EnableBackSpace='0' EnableGDataToSample='0' EnableStripHostEcho='0' EnableBinaryData='1' SerialType='0' TermToHost='254' TermFromHost='254' SerialBreakLen='5' MaxNumSamples='40' GroupNumber='0' THOST0='0' THOST1='5' THOST2='1000' THOST3='12000' THOST4='500' THOST5='5' TMODEM2='500' TMODEM3='18000' TMODEM4='100' \geq </ConfigurationData> _____

Aquadopp Version 1.40.14 Copyright (C) Nortek AS

Nortek ADCP 12391 (24 m):

Deployment : N20 Current time : 10/14/21 1:45:55 PM Start at : 11/2/21 1:00:00 AM Comment: 600kHz profiler, 24m, AQD 12391, N20, 2 Li BATS _____ Profile interval (s): 3600 Number of cells : 15 Cell size (m): 2.00Blanking distance (m): 0.50 Measurement load (%): 25 Average interval (s):240 Power level : HIGH Wave data collection : DISABLED Compass upd. rate (s): 1 Coordinate System : ENU Speed of sound (m/s) : MEASURED (ppt) : 36 Salinity Analog input 1 : NONE : NONE Analog input 2 Analog input power out : DISABLED File wrapping : OFF TellTale : OFF Acoustic modem : OFF Serial output : OFF Baud rate : 9600 -----

Assumed duration (days): 540.0 Battery utilization (%): 98.0 Battery level (V):11.2 Recorder size (MB): 3773 Recorder free space (MB): 3772.972 Memory required (MB): 2.1 Vertical vel. prec (cm/s) : 0.5 Horizon. vel. prec (cm/s): 1.6 _____ Instrument ID : AQD12391 Head ID : AQP 7427 Firmware version : 3.43 ProLog ID : 1062 ProLog firmware version : 4.24 _____ SD Card Inserted : YES SD Card Ready : YES SD Card Write protected : NO SD Card Type : SDHC SD Card Supported : YES _____ AquaPro Version 1.37.08 Copyright (C) Nortek AS

NTAS 20 Subsurface

					SAMPLE		SPIKE @ ~41-43		
					START		degrees C		
INSTRUMENT	SERIAL	IM	DEPTH	SAMPLE	DATE	TIME	DATE	START	STOP TIME
		ADDRESS	(m)	RATE (s)				TIME	
SBE 37 IM	669	3	10	600	20211107	010000	20211107	16:00:00	17:00:00
SBE 37 IM	683	4	25	600	20211107	010000	20211107	16:00:00	17:00:00
SBE 37 IM	684	5	40	600	20211107	010000	20211107	16:00:00	17:00:00
SBE 37 IM	685	7	55	600	20211107	010000	20211107	16:00:00	17:00:00
SBE 37 IM	686	8	70	600	20211107	010000	20211107	16:00:00	17:00:00
SBE 37 Deep	11392		4962	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 37 Deep	11393		4962	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8743		5	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	7697		15	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	7695		20	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8744		30	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8745		35	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8746		45	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8747		50	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8748		60	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8749		65	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8750		75	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8751		80	300	20211107	010000	20211107	16:00:00	17:00:00

SBE 39	8752		90	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8753		100	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 39	8754		110	300	20211107	010000	20211107	16:00:00	17:00:00
SBE 56	6979		0.9	60	20211107	010000	20211107	16:00:00	16:30:00
SBE 56	6980		0.8	60	20211107	010000	20211107	16:00:00	16:30:00
SBE 56	6982		0.9	60	20211107	010000	20211107	16:00:00	16:30:00
SBE 56	6983		0.9	60	20211107	010000	20211107	16:00:00	16:30:00
								-	_
Star-Oddi	5282		110	600	20211104	010000	20211107	16:00:00	17:00:00
Star-Oddi	5283		120	600	20211104	010000	20211107	16:00:00	17:00:00
Star-Oddi	5284		130	600	20211104	010000	20211107	16:00:00	17:00:00
Star-Oddi	5285		140	600	20211104	010000	20211107	16:00:00	17:00:00
Star-Oddi	5286		150	600	20211104	010000	20211107	16:00:00	17:00:00
Star-Oddi	5287		160	600	20211104	010000	20211107	16:00:00	17:00:00
Nortek ADCM	9407		5	180/1200	20211102	010000	20211107	16:00:00	20:30:00
Nortek ADCM - IM	5973	41	13	180/1200	20211107	160000	20211107	16:00:00	20:30:00
Nortek ADCP	12391		24	240/3600	20211102	010000	20211107	16:00:00	20:30:00
RBR Solo D	78198		6	21600	20211111	010000			
RBR Solo D	78197		83	21600	20211111	010000			
TRDI 300 kHz	23281		85	180/3600	20211104	010000	20211107	16:00:00	20:30:00

REPORT	1. Report No.	2.	3. Recipient's	Accession No.			
	WHUI-2023-01		5 Report Dat	te			
4. Title and Subtitle	antic Station (NTAS).		November	· 2021			
NTAS-20 Mooring Turnarou	6.						
November 4-28, 2021 Nev							
7. Author(s)	8. Performing	Organization Rept. No.					
Sebastien Bigorre, Ray Gra	10. Project/Ta	10. Project/Task/Work Unit No.					
9. Performing Organization Name	11. Contract(C) or Grant(G) No.					
Woods Hole Oceanograph	(G) NA190	AR4320074					
12. Sponsoring Organization Name	13. Type of Re	eport & Period Covered					
				report			
National Oceanic and Atmo	14.						
15. Supplementary Notes			I				
This report should be cited	as: Woods Hole Oceanographic	Institution technical Repo	ort, WHOI-2023	3-01			
16 Abstract (Limits 200 and a)							
io. Abstract (Limit: 200 Words)							
The Northwest Tropical Atla	antic Station (NTAS) was establish	ned to address the need	for accurate air	r-sea flux estimates			
and upper ocean measure	ments in a region with strong sea	surface temperature and	omalies and the	e likelihood of			
significant local air—sea int	eraction on interannual to decada	al timescales. The approa	ach is to mainta	ain a surface mooring			
outfitted for meteorologica	l and oceanographic measureme	nts at a site near 15 N, 5	1 W by succes	sive mooring			
turnarounds. These observ	ations are used to investigate air	-sea interaction process	es related to cl	limate variability. The			
NIAS Ocean Reference Sta	itering and Observing (COMO) R	the National Oceanic an	d Atmospheric	: Administration's			
(NOAA) Global Ocean Mon	Norw of the NTAS 19 meeting and	doployment of the NTA	S 20 mooring	wonitoring Division).			
moorings used Surlyn foan	buovs as the surface element. T	beso buovs were outfitte	S-20 mooning a	-Sea Interaction			
Meteorology (ASIMET) syst	rems Each system measures rec	ords and transmits via s	atellite the surf	ace meteorological			
variables necessary to com	pute air-sea fluxes of heat, mois	ture and momentum. The	e upper 160 m	of the mooring line			
were outfitted with oceano	graphic sensors for the measure	nent of temperature, sal	nity and veloci	ty.			
17. Document Analysis							
a. Descriptors Upper	Ocean Processes Group						
The No	rthwest Tropical Atlantic Station (NTAS)					
NTAS-2	20 Mooring Turnaround Cruise, N	overmber 4-28, 2021					
b. Identifiers/ Open-Ended Terms							
open-Ended lenns							
Group							
18. Availability Statement		19. Security Class (T	nis Report)	21. No. of Pages			
Approved for public releas	This Page	76					
		20. Security Class (1	nis Payej	ZZ. FIICE			
(See ANSI-Z39.18)	See Instruction	ns on Reverse		OPTIONAL FORM 272 (4-77) (Formerly NTIS-35)			
				Department of Commerce			